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Tobin’s q, operating cash flows, and change in return on equity as predictors, an expected
growth factor earns an average premium of 0.84% per month (t = 10.27) in the 1967–
2018 sample. The q5 model, which augments the Hou-Xue-Zhang (2015) q-factor model
with the expected growth factor, shows strong explanatory power in the cross section and
outperforms the Fama-French (2018) 6-factor model.

JEL Classification: G12, G14, M41

1. Introduction

In the investment theory, firms with high expected investment growth should earn higher
expected returns than firms with low expected investment growth, holding current invest-
ment and expected profitability constant. Intuitively, if expected investment is high next
period, the present value of cash flows from next period onward must be high. Consisting
primarily of the present value of cash flows from next period onward, the benefit of invest-
ment this period must also be high. As such, if expected investment is high next period
relative to current investment, the discount rate must be high to offset the high benefit of
investment this period to keep current investment low.

To test this prediction, we perform cross-sectional forecasting regressions of investment-
to-assets changes on current Tobin’s q, operating cash flows, and the change in return on
equity. Empirically, high cash flows and high changes in return on equity strongly predict
high investment-to-assets changes, and high Tobin’s q weakly predicts low investment-to-
assets changes. The expected 1-year-ahead investment-to-assets changes closely track the
average future realized 1-year-ahead investment-to-assets changes at the portfolio level.

More important, an independent 2× 3 sort on size and expected 1-year-ahead
investment-to-assets changes yields an expected investment growth factor, with an av-
erage premium of 0.84% per month (t = 10.27) from January 1967 to December 2018. The
q-factor model cannot explain this factor premium, with an alpha of 0.67% (t = 9.75).
As such, the expected growth factor represents a new dimension of the expected return
variation that is largely missing from the q-factor model.

We augment the q-factor model with the expected growth factor to form the q5 model
and stress-test it along with other recent factor models. For testing deciles, we use a large
set of 150 significant anomalies with NYSE breakpoints and value-weighted returns from
Hou, Xue, and Zhang (2019). For competing factor models, we examine the q-factor model;
the Fama-French (2015) 5-factor model; the Stambaugh-Yuan (2017) 4-factor model; the
Fama-French (2018) 6-factor model; the Fama-French alternative 6-factor model with the
operating profitability factor, RMW, replaced by a cash-based profitability factor, RMWc;
the Barillas-Shanken (2018) 6-factor model; as well as the Daniel-Hirshleifer-Sun (2019)
3-factor model. The Barillas-Shanken specification includes the market factor, SMB, the
investment and return on equity factors from the q-factor model, the Asness-Frazzini
(2013) monthly formed HML factor, and the momentum factor, UMD.

Improving on the q-factor model substantially, the q5 model is the best performing
model among all the factor models. Across the 150 anomalies, the average magnitude
of the high-minus-low alphas is 0.19% per month, dropping from 0.28% in the q-factor
model. The number of significant high-minus-low alphas (|t| ≥ 1.96) is 23 in the q5 model
(6 with |t| ≥ 3), dropping from 52 in the q-factor model (25 with |t| ≥ 3). The number of
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rejections by the Gibbons, Ross, and Shanken (1989) test is also smaller, 57 versus 101.
The q5 model improves on the q-factor model across most anomaly categories, especially
in the investment and profitability categories.

The q-factor model already compares well with the Fama-French 6-factor model. The
average magnitude of the high-minus-low alphas is 0.3% per month in the 6-factor model
(0.28% in the q-factor model). The numbers of significant high-minus-low 6-factor alphas
are 74 with |t| ≥ 1.96 and 37 with |t| ≥ 3. Both are higher than 52 and 25 in the q-factor
model, respectively. However, the number of rejections by the Gibbons-Ross-Shanken test
is 91, which is lower than 101 in the q-factor model. Replacing RMWwith RMWc improves
the 6-factor model’s performance. The average magnitude of the high-minus-low alphas
falls to 0.27%. The number of significant high-minus-low alphas drops to 59 with |t| ≥ 1.96
but is still higher than 52 in the q-factor model. The number of rejections by the Gibbons-
Ross-Shanken test is 71. Although substantially lower than 101 in the q-factor model, the
number of rejections is higher than 57 in the q5 model.

The Stambaugh-Yuan model is comparable with the q-factor model. The number of
high-minus-low alphas with |t| ≥ 1.96 is 64, which is higher than 52 in the q-factor model.
However, the number of rejections by the Gibbons-Ross-Shanken test is 87, which is lower
than 101 in the q-factor model. The Barillas-Shanken 6-factor model performs poorly.
The numbers of significant high-minus-low alphas are 63 with |t| ≥ 1.96 and 37 with |t| ≥
3, and the number of rejections by the Gibbons-Ross-Shanken test is 132 (out of 150
anomalies). Exacerbating the value-versus-growth anomalies, the Daniel-Hirshleifer-Sun
3-factor model also performs poorly, with the second highest average magnitude of high-
minus-low alphas, 0.37% per month, and the highest mean absolute alpha, 0.14%.

Our work makes two major contributions. First, we bring expected growth to the front
and center of empirical finance. We show that this extension resolves many empirical
difficulties of the q-factor model, such as the anomalies based on R&D-to-market as well as
operating and discretionary accruals. Intuitively, R&D expenses depress current earnings
but induce future growth. Also, given the level of earnings, high accruals imply low cash
flows (internal funds available for investments) and, consequently, low expected growth.

Second, we conduct a large horse race of factor models. In contrast to small sets of
testing portfolios in prior studies, we increase the number of testing anomalies drastically
to 150. Barillas and Shanken (2018) conduct Bayesian tests with only 11 factors and down-
play the importance of testing assets. We show that inferences on relative performance
depend on the choice of testing assets. For instance, the presence of both UMD and the
monthly formed HML causes difficulties in explaining annually formed value-versus-growth
anomalies in the Barillas-Shanken model, difficulties absent from the Fama-French 5-factor
model and the q-factor model. As such, it is crucial to use a large set of testing assets to
draw reliable inferences. Finally, our extensive evidence on how a given anomaly can be
explained by different factor models is also important in its own right.

Unlike investment and profitability, expected growth is unobservable. We must take
a stand on its empirical specification, such as the list of predictors to be included. We
acknowledge that the expected growth factor depends on the specification, and crucially,
on operating cash flows as a predictor. While it is intuitive why operating cash flows are
linked to expected growth, we emphasize a minimalistic interpretation of our evidence as
empirical dimension reduction. By more than halving the number of anomalies unexplained
by the q-factor model from 52 to 23, with only one extra factor, the q5 model makes further
progress toward the goal of dimension reduction (Cochrane, 2011).
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George, Hwang, and Li (2018) show that the ratio of current price to 52-week high price
contains information about future growth, information that helps explain the accrual and
R&D-to-market anomalies. Li and Wang (2018) use earnings before extraordinary items
and depreciation but after interest and taxes, along with Tobin’s q and prior 11-month
returns, to forecast capital expenditure growth. A rich accounting literature motivates
operating cash flows as a key predictor of future growth. Ball et al. (2016) show that cash-
based profitability outperforms earnings-based profitability in forecasting returns. Lev
(2001) and Lev and Gu (2016) argue that expensing R&D and other intangible invest-
ments per current accounting standards makes earnings a poor indicator of future growth.
Penman (2009) argues that the value of intangibles can be ascertained from variables,
such as cash flows, from the income statement. Lev, Radhakrishnan, and Zhang (2009)
estimate firm-specific organizational capital from its impact on operating cash flows via
revenue growth and cost containment.

The rest of the paper is organized as follows. Section 2 motivates the expected growth
factor. Section 3 forms cross-sectional growth forecasts and constructs the expected growth
factor. Section 4 stress-tests the factor models. Finally, Section 5 concludes. A separate
Supplementary Appendix details derivations, factor construction, and additional results.

2. Motivating Expected Growth

Hou, Xue, and Zhang (2015) underpin the q-factor model on a static investment frame-
work, which we extend to a dynamic setting to motivate the expected growth factor.
Section 2.1 describes the economic model. Section 2.2 presents its implications on cross-
sectional returns. Finally, Section 2.3 interprets the factors from the investment theory.

2.1 CONCEPTUAL FRAMEWORK

Time is discrete, and the horizon infinite. The economy is populated by a representative
household and heterogeneous firms, indexed by i = 1, 2, . . . , N . The household maximizes
its expected utility, E0

[∑∞
t=0

ρtU(Ct)
]
, in which ρ is time preference, Ct time-t consump-

tion, and U(·) the period utility function. Heterogeneous firms use capital and costlessly
adjustable inputs to produce a homogeneous output, which can be consumed or invested.
These inputs are chosen each period to maximize operating profits (defined as revenue mi-
nus the costs of these inputs). Taking operating profits as given, firms choose investment
to maximize their market value of equity.

Let Πit = XitAit be firm i’s time-t operating profits, in which Ait is productive as-
sets, and Xit stochastic return on assets. Xit is subject to aggregate and firm-specific
shocks. Let Iit be investment and δ the depreciation rate of assets, then Ait+1 = Iit +
(1− δ)Ait. Changing the scale of assets incurs adjustment costs, which are quadratic,
(a/2)(Iit/Ait)

2Ait, in which a > 0. For simplicity, we assume that the firm has no debt
and pays no taxes. The net payout of the firm is Dit = XitAit − Iit − (a/2)(Iit/Ait)

2Ait.
If Dit ≥ 0, the firm distributes it to shareholders. A negative Dit means that the firm
raises an amount of external equity that equals the absolute value of Dit.

The pricing implications of the household’s problem are well known. Let Pit be the
ex-dividend equity and Dit dividend of firm i. The consumption CAPM based on the
first principle for consumption and portfolio choice says that Et[Mt+1R

S
it+1] = 1, in

which Mt+1 ≡ ρU ′(Ct+1)/U
′(Ct) is the stochastic discount factor given by the house-
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hold’s intertemporal marginal rate of substitution, and RS
it+1 ≡ (Pit+1 +Dit+1)/Pit is

the stock return. Equivalently, Et[R
S
it+1]−Rft = βM

it λMt, in which Rft ≡ 1/Et[Mt+1] is
the real interest rate, βM

it ≡ −Cov(RS
it+1,Mt+1)/Var(Mt+1) the consumption beta, and

λMt ≡ Var(Mt+1)/Et[Mt+1] the price of the consumption risk.
On the production side, taking Mt+1 as given, firm i chooses the optimal investment

stream, {Iis}∞s=0, to maximize the market equity, E0

[∑∞
s=0

MisDis

]
. The first principle

of investment says that Et[Mit+1R
I
it+1] = 1, in which the investment return, RI

it+1, is:

RI
it+1 =

Xit+1 + (a/2) (Iit+1/Ait+1)
2 + (1− δ) [1 + a (Iit+1/Ait+1)]

1 + a (Iit/Ait)
. (1)

Intuitively, the investment return is the marginal benefit of investment at time t+ 1 di-
vided by the marginal cost of investment at t. Et[Mt+1R

I
it+1] = 1 says that the marginal

cost equals the next period marginal benefit discounted to time t with the stochastic dis-
count factor. In the numerator of the investment return, Xit+1 is the marginal profits
produced by an extra unit of assets, (a/2)(Iit+1/Ait+1)

2 the marginal reduction in adjust-
ment costs, and the last term in the numerator the marginal continuation value of the
extra unit of assets, net of depreciation.

Cochrane (1991) uses no-arbitrage to argue, and Restroy and Rockinger (1994) prove
under constant returns to scale, that the stock return equals the investment return period
by period and state by state (the Supplementary Appendix). Equation (1) says that the
stock return equals the next period marginal benefit of investment divided by the current
marginal cost of investment. Intuitively, the firm will keep investing until the marginal cost
of investment, which rises with investment, equals the present value of an extra unit of
assets given by the next period marginal benefit of investment discounted by the discount
rate (the stock return). With debt and taxes, Liu, Whited, and Zhang (2009) show that
the left-hand side of equation (1) becomes the weighted average cost of capital. As such,
the equation is exactly the net present value rule of capital budgeting in corporate finance.

2.2 PRICING IMPLICATIONS

In a static model, in which Iit+1 = 0, equation (1) collapses to RS
it+1 = (Xit+1 + 1−

δ)/(1 + aIit/Ait). All else equal, low investment stocks should earn higher expected re-
turns than high investment stocks, and high expected profitability stocks should earn
higher expected returns than low expected profitability stocks. Intuitively, given expected
profitability, high costs of capital give rise to low net present values of new projects and
low investment. Given investment, high expected profitability implies high discount rates,
which are necessary to offset the high expected profitability to induce low net present
values of new projects to keep investment low. Hou, Xue, and Zhang (2015) build on these
insights to form the investment and return on equity factors in the q-factor model.

In the multiperiod framework, equation (1) says that holding investment and expected
profitability constant, the expected return also increases with the expected investment-to-
assets growth. The right-hand side of equation (1) can be decomposed into a “dividend
yield” and a “capital gain.” The former is [Xit+1 + (a/2)(Iit+1/Ait+1)

2]/(1 + aIit/Ait),
which largely conforms to the static model, as the squared term, (Iit+1/Ait+1)

2, is econom-
ically small. The “capital gain,” (1− δ)(1 + aIit+1/Ait+1)/(1 + aIit/Ait), is the growth of
marginal q (the market value of an extra unit of assets). Although the “capital gain” in-
volves the unobservable parameter, a, it is roughly proportional to the investment-to-assets
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growth, (Iit+1/Ait+1)/(Iit/Ait) (Cochrane, 1991). As such, the expected investment-to-
assets growth is the third “determinant” of the expected return.

The intuition is exactly analogous to the intuition underlying the positive profitability-
expected return relation. The term, 1 + aIit+1/Ait+1, is the marginal cost of investment
next period, which, per the first principle of investment, equals the marginal q next period
(the present value of cash flows in all future periods arising from one extra unit of assets
next period). The expected marginal q is then part of the expected marginal benefit of
current investment. This term is absent from the static model that abstracts from growth
in subsequent periods. As such, in the multiperiod world, if expected investment is high
relative to current investment, the discount rate must be high to offset the high expected
marginal benefit of current investment to keep current investment low.

2.3 INTERPRETING FACTORS: AN INVESTMENT PERSPECTIVE

Hou, Xue, and Zhang (2015) implement the static version of equation (1) with the Fama-
French (1993) portfolio approach. Hou et al. construct factor mimicking portfolios on
investment and profitability and use the factors in the right-hand side of time series re-
gressions. Analogously, we build an expected growth factor to form an expanded factor
model. The time-honored portfolio approach takes advantage of high-frequency stock re-
turns data, which are less subject to measurement errors than accounting variables. In
addition, structurally estimating equation (1) directly as in, for example, Liu, Whited,
and Zhang (2009), involves specification errors in the marginal product of capital and the
marginal cost of investment, errors that are largely avoided in the factor approach.

Because the factor approach and structural estimation are two different ways of im-
plementing the investment theory, we interpret the q5 model as a linear approximation
to the firm-level cost of capital given by the nonlinear equation (1). The equation says
that the expected return varies cross-sectionally, depending on firms’ investment, expected
profitability, and expected investment growth. The q5 model operationalizes this insight
by forming factors on the three “determinants.”

As two different ways of summarizing correlations between returns and characteristics,
factor models and cross-sectional regressions are largely equivalent on economic grounds.
If a characteristic is significant in cross-sectional regressions, its factor likely earns a sig-
nificant premium in the time series, and vice versa. Factor loadings are no more primitive
than characteristics, and vice versa, in explaining average returns (Lin and Zhang, 2013).

The return comovements among stocks with similar investment, profitability, and ex-
pected growth, in the sense of Ross (1976), can arise from the comovements in their
investment returns due to the similar characteristics. In particular, stocks with similar
investment-to-assets comove in their stock returns because their investment returns are
similar due to similar investment-to-assets in the denominator of equation (1). Analo-
gously, stocks with similar profitability comove in their stock returns because their invest-
ment returns are similar due to similar profitability in the numerator. Finally, stocks with
similar expected investment growth comove in their stock returns because their investment
returns are similar due to similar expected investment growth.1

1 This mechanism of comovements in the investment theory, which is based on the op-
timality condition of an individual firm, is microeconomic in nature. This mechanism
differs from the comovement mechanism in the consumption CAPM. The consumption
CAPM works through a representative consumer, which gives rise to aggregate consump-
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In this sense, we echo Kozak, Nagel, and Santosh (2018) in that horse races between
covariances and characteristics cannot shed light on the efficient markets versus behavioral
finance debate. In their model, distorted beliefs drive the cross section of expected returns,
but the cross section can be captured empirically by a low dimensional factor model. While
Kozak et al. emphasize that the evidence that a factor model explains returns is not
inconsistent with mispricing, we emphasize that the evidence that characteristics explain
returns is not inconsistent with efficient markets.

More important, we interpret the q5 model as summarizing a large amount of the
cross-sectional variation in average returns (dimension reduction). This interpretation is
distinctively weaker than the risk factors interpretation of Fama and French (1993, 1996).
We are keenly aware that our evidence is not inconsistent with mispricing (Lin and Zhang,
2013). For example, the stock market might not adequately value intangibles (Edmans,
2011), giving rise to a positive relation between operating cash flows and average subse-
quent returns. Future work can shed further light on the economic driving forces behind
the investment, profitability, and expected growth factors.

3. Constructing the Expected Growth Factor

We perform cross-sectional growth forecasts in Section 3.1, form the expected growth
factor in Section 3.2, and explore alternative growth specifications in Section 3.3.

3.1 CROSS-SECTIONAL GROWTH FORECASTS

A technical issue arises in that firm-level investment is frequently negative, making the
growth rate of investment-to-assets ill-defined. As such, we forecast future investment-
to-assets changes. Forecasting changes captures the essence of the economic insight that
all else equal, high expected investment-to-assets relative to current investment-to-assets
must imply high discount rates.

Our forecasting framework is monthly Fama-MacBeth (1973) cross-sectional predictive
regressions. At the beginning of each month t, we measure current investment-to-assets as
total assets (Compustat annual item AT) from the most recent fiscal year ending at least
four months ago minus the total assets from one year prior, scaled by the 1-year-prior
total assets. The left-hand side variables in the cross-sectional regressions are investment-
to-assets changes, denoted dτ I/A, in which τ = 1, 2, and 3 years. We measure d1I/A,
d2I/A, and d3I/A as investment-to-assets from the first, second, and third fiscal year after
the most recent fiscal year end minus the current investment-to-assets, respectively. The
sample is from July 1963 to December 2018.

Following Cooper, Gulen, and Schill (2008), Hou, Xue, and Zhang (2015) measure
investment-to-assets as asset growth when constructing the investment factor in their q-
factor model. Because our conceptual framework is a dynamic extension of Hou et al.’s
static model, we adopt the same definition to be consistent. Fama and French (2015, 2018)
also use the same definition of investment. Cooper, Gulen, and Ion (2017) argue that the

tion growth as the key factor. However, the aggregate nature of the factor is a direct
consequence of the strong aggregation assumption embedded in the consumption CAPM.
In all, characteristics-based factors are on as solid theoretical grounds in the investment
theory as aggregation consumption growth in the consumption theory (Zhang, 2017).
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asset growth premium is mostly driven by the growth in noncash current assets, as opposed
to long-term investment in fixed assets. However, the net present value intuition underlying
the investment factor applies not only to long-term investment in fixed assets but also to
short-term investment in working capital. In the presence of capital heterogeneity, asset
growth is a simple, convenient measure of the ratio of total investments to total assets, a
measure that summarizes the predictive power of investments on different capital goods.2

3.1.1 Predictors Based on A Priori Conceptual Arguments

Which variables should one use to forecast future growth? Our goal is a conceptually
motivated yet empirically validated specification for the expected investment-to-assets
changes. Keynes (1936) and Tobin (1969) argue that a firm should invest if its average q
exceeds one. Lucas and Prescott (1971) and Mussa (1977) show that optimal investment
requires the marginal cost of investment to equal marginal q. With quadratic adjustment
costs, this first-order condition of investment can be rewritten as a linear regression of
investment-to-assets on marginal q, which is unobservable. Hayashi (1982) shows that
under constant returns to scale, marginal q equals average q, which is observable. As such,
we include Tobin’s q as a predictor.

Cash flows typically have economically large and statistically significant slopes once
included in the investment-q regression. Fazzari, Hubbard, and Petersen (1988) show that
the cash flows effect on investment is especially strong for firms that are more financially
constrained. However, the interpretation of the cash flows effect is controversial.3 We
remain agnostic about the exact interpretation of the cash flows effect, which is not directly
related to our asset pricing questions. As such, we also include cash flows on the right-hand
side of our forecasting regressions.

More important, a rich accounting literature motivates cash flows as a key predictor
of future growth. Ball et al. (2016) document that cash-based profitability outperforms
earnings-based profitability in forecasting returns. The evidence suggests that firms with
high accruals earn lower average returns because of their lower profitability on a cash
basis. We complement their interpretation by linking cash flows and accruals to expected
growth. Intuitively, high cash flows mean more internal funds available for investments,
giving rise to high expected growth and expected returns. High accruals mean low cash
flows, all else equal, giving rise to low expected growth and expected returns.

2 Wu, Zhang, and Zhang (2010) use the net present value intuition on working capital
investments to explain the accruals anomaly. Belo and Lin (2012) show that the relation be-
tween inventory and average returns arises from a 2-capital investment model. Goncalves,
Xue, and Zhang (2019) show that a 2-capital model with working and physical capital
goods does a good job in fitting the value, momentum, asset growth, and profitability
premiums simultaneously via structural estimation. The main challenge that Goncalves et
al. manage to overcome is to explain the value premium, while simultaneously accounting
for momentum. The asset growth premium poses no particular difficulty.
3 Using measurement error-consistent estimation, Erickson and Whited (2000) find that
cash flows do not matter in the investment-q regression even for financially constrained
firms and interpret the cash flows effect as indicative of measurement errors in Tobin’s q. In
addition, the investment-cash flows relation can arise theoretically even without financial
constraints (Gomes, 2001; Alti, 2003; Abel and Eberly, 2011). Finally, in a model with
financial constraints, cash flows matter only if one ignores marginal q (Gomes, 2001).
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A large national accounting literature shows that intangible investments have become
more important than tangible investments as a fraction of gross value added over the past
two decades (Corrado, Hulten, and Sichel, 2009). Haskel and Westlake (2018) describe the
broad-ranging consequences of the rise of the intangible economy. In financial accounting,
intangible investments such as R&D, advertising, supply chains, information technology,
and employee training are all immediately expensed, making earnings a poor indicator
of expected growth and the market value (Lev, 2001; Lev and Gu, 2016). Because their
future payoffs are uncertain, intangible assets fail to meet the criteria for asset recognition
in the balance sheet per accounting standards. However, intangibles have become arguably
more important than fixed assets in driving expected growth and the market value.

Penman (2009) argues that omitting intangibles from the balance sheet is not necessarily
deficient because the value of intangibles can be ascertained from the flow variables in
the income statement. For example, although missing from its balance sheet, the brand
value of the Coca-Cola Company directly impacts on its operating profits (revenue minus
operating costs). In particular, Lev, Radhakrishnan, and Zhang (2009) develop a firm-
specific measure of organizational capital based on its impact on operating cash flows by
increasing revenues and containing costs. Lev et al. show that their measure correlates
positively with future growth in operating profits and sales. These powerful accounting
insights motivate operating cash flows as a key predictor of future growth.

Finally, both Tobin’s q and cash flows are slow-moving. To help capture the short-term
dynamics of expected growth, we also include the change in return on equity over the
past four quarters, denoted dRoe, on the right-hand side of our forecasting regressions.
Intuitively, firms that experience recent increases in profitability tend to raise future in-
vestments in the short term, and firms that experience recent decreases in profitability
tend to reduce future investments.4

3.1.2 Measuring Growth Predictors

Monthly returns are from the Center for Research in Security Prices (CRSP) and account-
ing information from the Compustat Annual and Quarterly Fundamental Files. We require
CRSP share codes to be 10 or 11. Financial firms and firms with negative book equity
are excluded. Our measure of Tobin’s q is standard (Kaplan and Zingales, 1997). At the
beginning of each month t, current Tobin’s q is the market equity (price per share times
the number of shares outstanding from CRSP) plus long-term debt (Compustat annual
item DLTT) and short-term debt (item DLC) scaled by book assets (item AT), all from
the most recent fiscal year ending at least four months ago. For firms with multiple share
classes, we merge the market equity for all classes.

We follow Ball et al. (2016) in measuring operating cash flows, denoted Cop. At the
beginning of each month t, we measure current Cop as total revenue (Compustat annual

4 Novy-Marx (2015) argues that the investment model cannot explain momentum mea-
sured as dRoe. However, Liu, Whited, and Zhang (2009) show that firms that experience
recently positive earnings shocks have higher average future investment growth than firms
that experience recently negative earnings shocks. Liu and Zhang (2014) show that this
future investment growth spread is temporary, converging within 12 months, and helps
explain the short duration of price and earnings momentum. Goncalves, Xue, and Zhang
(2019) show that a detailed treatment of aggregation and capital heterogeneity enables
the investment model to explain value and momentum simultaneously. We instead form
cross-sectional growth forecasts, on which we construct the expected growth factor.



10 K. HOU ET AL.

item REVT) minus cost of goods sold (item COGS), minus selling, general, and adminis-
trative expenses (item XSGA), plus research and development expenditures (item XRD,
zero if missing), minus change in accounts receivable (item RECT), minus change in inven-
tory (item INVT), minus change in prepaid expenses (item XPP), plus change in deferred
revenue (item DRC plus item DRLT), plus change in trade accounts payable (item AP),
and plus change in accrued expenses (item XACC), scaled by book assets, all from the
fiscal year ending at least four months ago. Missing annual changes are set to zero.

The change in return on equity, dRoe, is Roe minus the 4-quarter-lagged Roe. Roe
is income before extraordinary items (Compustat quarterly item IBQ) scaled by the 1-
quarter-lagged book equity. We compute dRoe with earnings from the most recent an-
nouncement dates (item RDQ), and if not available, from the fiscal quarter ending at
least four months ago (Hou, Xue, and Zhang, 2019). Finally, missing dRoe values are set
to zero in the cross-sectional forecasting regressions.

3.1.3 Cross-sectional Forecasting Regressions

Panel A of Table 1 shows monthly cross-sectional regressions of future investment-to-
assets changes on the log of Tobin’s q, log(q); cash flows, Cop; and the change in return
on equity, dRoe. We winsorize both the left- and right-hand side variables each month at
the 1–99% level. To control for the impact of microcaps, we use weighted least squares
with the market equity as the weights.

At the beginning of each month t, we construct expected τ -year-ahead investment-to-
assets changes, denoted Et[d

τ I/A], in which τ = 1, 2, and 3 years, by combining most
recent winsorized predictors with the average slopes estimated from the prior 120-month
rolling window (30 months minimum). The most recent predictors, log(q) and Cop, in
Et[d

τ I/A] are from the most recent fiscal year ending at least four months ago as of
month t, and dRoe is computed using the latest announced quarterly earnings, and if not
available, the earnings from the most recent fiscal quarter ending at least four months ago.

The average slopes in calculating Et[d
τ I/A] are estimated from the prior rolling window

regressions, in which dτ I/A is from the most recent fiscal year ending at least four months
ago as of month t, and the regressors are further lagged accordingly. For instance, for
τ = 1, the regressors in the latest monthly cross-sectional regression are further lagged
by 12 months relative to the most recent predictors that we combine with the slopes in
calculating Et[d

1I/A]. Finally, we report the time series averages of cross-sectional Pearson
and rank correlations between Et[d

τ I/A] calculated at the beginning of month t and the
subsequent τ -year-ahead investment-to-assets changes after month t.

Panel A shows that Tobin’s q alone is a weak predictor of investment-to-assets changes.
At the 1-year horizon, the slope, 0.02, is small, albeit significant. The R2 is only 1%, which
is not surprising when forecasting changes. The out-of-sample correlations are also close
to zero.5 Operating cash flows, Cop, perform better than Tobin’s q. When used alone, Cop

5 Forecasting growth rates often yields low explanatory power. For example, Chan,
Karceski, and Lakonishok (2003) document a low R2 for earnings growth, even with a
myriad of predictors, including valuation ratios. Also, in untabulated results, we show
that the time series average of the contemporaneous cross-sectional Pearson correlation
between log(q) and investment-to-assets is 0.23, and the rank correlation 0.3. The invest-
ment theory predicts a tight relation of Tobin’s q with the current investment level, but
not necessarily with future investment-to-assets changes.
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has significant slopes that range from 0.42 to 0.46 (t-values above 10). The out-of-sample
correlations are much higher than those with Tobin’s q. The change in return on equity,
dRoe, performs better than Tobin’s q, but not cash flows. When used alone, the dRoe
slopes range from 0.75 to 0.95, with t-values above 7.5.

In our benchmark specification with log(q), Cop, and dRoe together, the slopes are
similar to those from univariate regressions. At the 1-year horizon, for instance, the Cop
slope remains large and significant, 0.52, the log(q) slope becomes weakly negative, −0.03,
and the dRoe slope stays significant at 0.77. The in-sample R2 increases to 6.4%. The
out-of-sample Pearson and rank correlations, which are important for constructing the
expected growth factor, are 0.14 and 0.21, respectively. Both are highly significant. At the
3-year horizon, the log(q) and Cop slopes both increase in magnitude to −0.09 and 0.75,
respectively, but the dRoe slope falls slightly to 0.72. The in-sample R2 rises to 9%, and
the out-of-sample correlations rise slightly to 0.15 and 0.22, respectively.

3.2 THE EXPECTED GROWTH PREMIUM

Armed with the cross-sectional forecasts of investment-to-assets changes, we form the
expected growth deciles, construct an expected growth factor, and augment the q-factor
model with the new factor to form the q5 model.

3.2.1 Deciles

At the beginning of each month t, we form deciles on the expected investment-to-assets
changes, Et[d

τ I/A], with τ = 1, 2, and 3 years. As in Table 1, we calculate Et[d
τ I/A] by

combining most recent winsorized predictors with the average slopes from the prior 120-
month rolling window (30 months minimum). We sort all stocks into deciles on the NYSE
breakpoints of the ranked Et[d

τ I/A] values and calculate the value-weighted decile returns
for the current month t. The deciles are rebalanced at the beginning of month t+ 1.

Panel A of Table 2 shows that a reliable expected growth premium in portfolio sorts.
The high-minus-low Et[d

1I/A] decile earns on average 1.07% per month (t = 6.48), and
the high-minus-low Et[d

2I/A] and Et[d
3I/A] deciles earn on average about 1.18%, with

t-values above 7. From Panel B, the expected growth premium cannot be explained by the
q-factor model. The high-minus-low alphas are 0.86%, 0.93%, and 1.01% (t = 6.19, 5.53,
and 6.01) over the 1-, 2-, and 3-year horizons, respectively. The mean absolute alphas
across the deciles are 0.23%, 0.21%, and 0.24%, respectively, and the q-factor model is
strongly rejected by the Gibbons, Ross, and Shanken (1989, GRS) test on the null that
the alphas are jointly zero across a given set of deciles (untabulated).

Panel C reports the expected investment-to-assets changes, and Panel D the average
subsequently realized changes across the Et[d

τ I/A] deciles. Both the expected and realized
changes are value-weighted at the portfolio level with the market equity as the weights.
Reassuringly, the expected changes track the subsequently realized changes closely. At
the 1-year horizon, the expected changes rise monotonically from −15.21% per annum for
decile 1 to 7.65% for decile 10, and the average realized changes from −16.69% for decile
1 to 5.96% for decile 10. As such, our Et[d

τ I/A] proxy is close to an unbiased estimator
at the portfolio level, which diversifies away firm-level estimation errors. The time series
average of cross-sectional correlations between the expected and realized changes is 0.64,
which is highly significant (untabulated). The evidence for the 2- and 3-year horizons
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Table 2 Properties of the Expected Growth Deciles (January 1967–December 2018)

τ Low 2 3 4 5 6 7 8 9 High H−L

Panel A: Average excess returns, R

1 R −0.12 0.20 0.28 0.42 0.45 0.49 0.56 0.64 0.77 0.95 1.07
t −0.40 0.84 1.21 2.00 2.36 2.61 3.00 3.54 4.17 4.69 6.48

2 R −0.09 0.23 0.23 0.37 0.44 0.60 0.62 0.80 0.70 1.08 1.17
t −0.33 0.98 1.07 1.79 2.29 3.36 3.50 4.23 3.61 5.10 7.14

3 R −0.08 0.20 0.30 0.39 0.53 0.51 0.74 0.68 0.81 1.11 1.19
t −0.29 0.90 1.41 1.92 2.82 2.79 3.86 3.39 4.19 5.20 7.13

Panel B: The q-factor alphas, αq

1 αq −0.42 −0.35 −0.23 −0.14 −0.15 −0.02 0.08 0.17 0.29 0.43 0.86
t −4.09 −3.45 −2.28 −1.58 −1.80 −0.28 1.05 1.64 3.54 4.31 6.19

2 αq −0.36 −0.19 −0.17 −0.19 −0.13 0.06 0.01 0.17 0.29 0.58 0.93
t −3.78 −2.43 −1.81 −2.88 −1.81 0.68 0.19 1.88 3.02 4.16 5.53

3 αq −0.40 −0.16 −0.21 −0.23 −0.02 −0.11 0.17 0.19 0.30 0.61 1.01
t −4.14 −1.84 −2.49 −3.00 −0.21 −1.21 1.88 1.98 3.02 4.40 6.01

Panel C: The expected growth, Et[d
τ I/A]

1 Et[d
τ I/A] −15.21 −7.67 −5.61 −4.20 −3.03 −1.97 −0.86 0.47 2.52 7.65 22.87
t −36.75 −31.37 −25.19 −20.56 −15.96 −11.01 −5.08 3.01 16.53 37.98 45.21

2 Et[d
τ I/A] −19.87 −10.18 −7.38 −5.52 −4.03 −2.67 −1.23 0.51 3.13 9.44 29.31
t −34.26 −26.34 −21.16 −16.88 −12.97 −8.94 −4.22 1.81 11.30 29.57 45.51

3 Et[d
τ I/A] −20.42 −11.16 −8.26 −6.33 −4.75 −3.31 −1.77 0.03 2.66 9.06 29.48
t −30.59 −23.07 −18.58 −15.04 −11.80 −8.51 −4.70 0.10 7.67 24.92 44.17

Panel D: Average future realized growth, dτ I/A

1 dτ I/A −16.69 −12.30 −4.11 −3.56 −1.10 −0.43 −0.32 0.64 1.57 5.96 22.65
t −11.71 −8.36 −7.15 −5.22 −2.24 −0.90 −0.71 1.18 3.59 9.07 14.72

2 dτ I/A −23.68 −12.64 −6.45 −3.74 −2.25 −1.44 0.10 1.47 1.25 3.14 26.82
t −14.38 −12.42 −8.44 −4.60 −3.86 −2.43 0.22 2.72 2.33 4.93 16.10

3 dτ I/A −23.10 −12.91 −7.00 −3.20 −2.29 −2.90 −1.44 −0.50 0.46 1.31 24.41
t −14.70 −13.87 −9.51 −4.72 −3.79 −4.68 −2.96 −0.91 0.76 1.85 15.18

We use the log of Tobin’s q, log(q), cash flow, Cop, and the change in return on equity, dRoe,
to form the expected investment-to-assets changes, Et[d

τ I/A], with τ ranging from 1 to 3 years.
At the beginning of each month t, we calculate Et[d

τ I/A] by combining the three most recent

predictors (winsorized at the 1–99% level) with the average slopes. The most recent predictors,
log(q) and Cop, are from the most recent fiscal year ending at least four months ago as of month
t, and dRoe uses the latest announced earnings, and if not available, the earnings from the most
recent fiscal quarter ending at least four months ago. The average slopes in calculating Et[d

τ I/A]
are from the prior 120-month rolling window (30 months minimum), in which the dependent vari-
able, dτ I/A, uses data from the fiscal year ending at least four months ago as of month t, and the
regressors are further lagged accordingly. For instance, for τ = 1, the regressors used in the latest
monthly cross-sectional regression are further lagged by 12 months relative to the most recent
predictors used in calculating Et[d

1I/A]. Cross-sectional regressions are estimated via weighted
least squares with the market equity as weights. At the beginning of each month t, we sort all
stocks into deciles based on the NYSE breakpoints of the ranked Et[d

τ I/A] values, and compute
value-weighted decile returns for the current month t. The deciles are rebalanced at the begin-
ning of month t+ 1. For each decile and the high-minus-low decile, we report the average excess
return, R, the q-factor alpha, αq , the expected investment-to-assets changes, Et[d

τ I/A], and the
average future realized changes, dτ I/A, and their heteroscedasticity-and-autocorrelation-adjusted
t-statistics (beneath the corresponding estimates). Et[d

τ I/A] and dτ I/A are value-weighted.
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is largely similar, with correlations of 0.7 and 0.67, respectively. As such, our empirical
specification for the expected investment-to-assets changes seems effective.

3.2.2 A Common Factor

In view of the expected growth premium largely unexplained by the q-factor model, we
form an expected growth factor, denoted REg. Following the standard factor construction
procedure per Fama and French (1993), we form REg from an independent 2× 3 sort on
the market equity and the expected 1-year-ahead investment-to-assets changes, Et[d

1I/A].
At the beginning of each month t, we use the beginning-of-month median NYSE market

equity to split stocks into two groups, small and big. Independently, we split all stocks
into three groups, low, medium, and high, based on the NYSE breakpoints for the low
30%, middle 40%, and high 30% of the ranked Et[d

1I/A] values. Taking the intersection
of the two size and three Et[d

1I/A] groups, we form six benchmark portfolios. Monthly
value-weighted portfolio returns are calculated for the current month t, and the portfolios
are rebalanced at the beginning of month t+ 1. Designed to mimic the common variation
related to Et[d

1I/A], the expected growth factor, REg, is the difference (high-minus-low),
each month, between the simple average of the returns on the two high Et[d

1I/A] portfolios
and the simple average of the returns on the two low Et[d

1I/A] portfolios.
Panel A of Table 3 shows the basic properties of the expected growth factor, REg. From

January 1967 to December 2018, its average return is 0.84% per month (t = 10.27). The
large t-value clears the high hurdle of 3 that adjusts for multiple testing per Harvey, Liu,
and Zhu (2016). The q-factor regression of REg yields a large alpha of 0.67% (t = 9.75). Its
investment and return on equity factor loadings are both significantly positive, 0.21 and 0.3
(t = 4.86 and 9.13), respectively, but still leave the bulk of the average return unexplained.
As such, the expected growth factor captures a new dimension of the expected return
variation missed by the q-factor model. In untabulated results, the Fama-French (2018)
6-factor alpha of the expected growth factor is 0.71% (t = 11.71). Based on the 6-factor
model, Chordia, Goyal, and Saretto (2019) propose a t-value cutoff of 3.84 for time series
alphas to control for multiple testing. Our t-value of 11.71 far exceeds this high hurdle.

The subsequent five regressions in Panel A identify the sources behind the expected
growth premium. To this end, we form factors on log(q), Cop, and dRoe, by interacting
each of them separately with the market equity in 2× 3 sorts. Cop is the most important
component of the expected growth premium. Augmenting the q-factor model with the Cop
factor reduces the alpha of REg from 0.67% per month (t = 9.75) to 0.37% (t = 6.35). dRoe
plays a more limited role. Adding the dRoe factor to the q-factor model reduces the alpha
only slightly to 0.63% (t = 8.56). Tobin’s q is negligible on its own but more effective when
used together with Cop and dRoe. Adding the log(q), Cop, and dRoe factors together to
the q-factor model yields an alpha of 0.25% (t = 4.04), which is lower than 0.33% (t = 5.2)
when adding only the Cop and dRoe factors.6

6 We form the log(q) and Cop factors with annual sorts to facilitate comparison with
the existing literature (Ball et al. 2016). In untabulated results, we have also examined
the log(q) and Cop factors with monthly sorts that are analogous to our construction of
the expected growth factor. Tobin’s q continues to play a negligible role when used alone.
Adding the monthly sorted Cop factor into the q-factor model yields an alpha of 0.27%
(t = 5.16) for the expected growth factor, and adding all three monthly formed factors
reduces the alpha further to 0.16% (t = 2.9).
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Table 3 Properties of the Expected Growth Factor, REg (January 1967–December 2018)

Panel A: Properties of the expected growth factor, REg

REg α βMkt βMe βI/A βRoe R2

0.84 0.67 −0.11 −0.09 0.21 0.30 0.44
(10.27) (9.75) (−6.38) (−3.56) (4.86) (9.13)

α βMkt βMe βI/A βRoe βlog(q) R2

0.67 −0.11 −0.09 0.23 0.30 −0.02 0.44
(9.80) (−6.40) (−3.61) (4.72) (8.83) (−0.48)

α βMkt βMe βI/A βRoe βCop R2

0.37 −0.02 −0.02 0.31 0.14 0.60 0.65
(6.35) (−1.66) (−0.54) (9.51) (4.37) (10.63)

α βMkt βMe βI/A βRoe βdRoe R2

0.63 −0.11 −0.10 0.18 0.23 0.16 0.46
(8.56) (−6.62) (−3.93) (3.57) (5.00) (2.41)

α βMkt βMe βI/A βRoe βCop βdRoe R2

0.33 −0.03 −0.02 0.28 0.07 0.60 0.15 0.66
(5.20) (−1.88) (−0.72) (6.73) (1.72) (10.02) (2.33)

α βMkt βMe βI/A βRoe βlog(q) βCop βdRoe R2

0.25 −0.01 −0.01 0.06 0.04 0.22 0.72 0.21 0.70
(4.04) (−0.86) (−0.35) (1.31) (1.27) (8.36) (14.61) (3.19)

Panel B: Correlations of REg with other factors

RMkt RMe RI/A RRoe Rlog(q) RCop RdRoe

−0.458 −0.367 0.342 0.506 0.188 0.710 0.423

The log of Tobin’s q, log(q), cash flows, Cop, and change in return on equity, dRoe, are used
to form the expected 1-year-ahead investment-to-assets changes, Et[d

1I/A]. At the beginning of
month t, Et[d

1I/A] combines the most recent predictors (winsorized at the 1–99% level) with
average Fama-MacBeth slopes. The most recent log(q) and Cop are from the most recent fiscal
year ending at least four months ago as of month t, and dRoe uses the latest announced earnings,
and if not available, the earnings from the most recent fiscal quarter ending at least four months
ago. The average slopes in calculating Et[d

τ I/A] are from the prior 120-month rolling window
(30 months minimum), in which the dependent variable, d1I/A, uses data from the fiscal year
ending at least four months ago as of month t, and the regressors are further lagged. We estimate
the regressions via weighted least squares with the market equity as weights. At the beginning of
each month t, we use the median NYSE market equity to split stocks into two groups, small and
big, based on the beginning-of-month market equity. Independently, we sort all stocks into three
Et[d

1I/A] groups, low, median, and high, based on the NYSE breakpoints for the low 30%, middle
40%, and high 30% of its ranked values at the beginning of month t. Taking the intersections,
we form six portfolios. We calculate value-weighted portfolio returns for the current month t, and
rebalance the portfolios at the beginning of month t+ 1. The expected growth factor, REg, is
the difference (high-minus-low), each month, between the simple average of the returns on the
two high Et[d

1I/A] portfolios and the simple average of the returns on the two low Et[d
1I/A]

portfolios. Panel A reports for the expected growth factor, REg, its average return, REg, and
alphas, factor loadings, and R2s from the q-factor model, and the q-factor model augmented with
an log(q) factor, a Cop factor, and a dRoe factor, separately or jointly. The t-values adjusted for
heteroscedasticity and autocorrelations are in parentheses. To form the log(q) and Cop factors,
we use independent annual sorts (with size) at the end of June of year t, with NYSE breakpoints
for the low 30%, middle 40%, and high 30% of the ranked values from the fiscal year ending in
calendar year t− 1. To form the dRoe factor, we use independent monthly sorts (with size) at
the beginning of each month t, with NYSE breakpoints for the low 30%, middle 40%, and high
30% of the ranked values of dRoe. dRoe is calculated with the latest announced earnings, and if
not available, with the earnings from the fiscal quarter ending at least four months ago. Panel
B reports the correlations of the expected growth factor, REg, with the q-factors, as well as the
log(q), Cop, and dRoe factors.
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Panel B shows that the expected growth factor has positive correlations of 0.34 and
0.51 with the investment and Roe factors but negative correlations of −0.46 and −0.37
with the market and size factors in the q-factor model. All are significant from zero.

3.2.3 The q5 Model

We augment the q-factor model with the expected growth factor to form the q5 model.
The expected excess return of an asset, denoted E[Ri −Rf ], is described by the loadings
of its returns to five factors, including the market factor, RMkt; the size factor, RMe; the
investment factor, RI/A; the return on equity factor, RRoe; and the expected growth factor,
REg. The first four factors are identical to those in the q-factor model. Formally,

E[Ri −Rf ] = βi
Mkt E[RMkt] + βi

Me E[RMe] + βi
I/A E[RI/A] + βi

Roe E[RRoe] + βi
Eg E[REg],

(2)
in which E[RMkt], E[RMe], E[RI/A], E[RRoe], and E[REg] are the expected factor premi-
ums, and βi

Mkt, β
i
Me, β

i
I/A, β

i
Roe, and βi

Eg are their factor loadings, respectively.
Not surprisingly, the expected growth factor explains the deciles sorted on the expected

1-year-ahead investment-to-assets changes, Et[d
1I/A] (the Supplementary Appendix). The

high-minus-low decile earns a q5 alpha of only −0.15% per month (t = −1.5) due to a large
expected growth factor loading of 1.5 (t = 26.75). The mean absolute alpha is only 0.07%,
and the GRS test cannot reject the q5 model (p = 0.13). Reassuringly, the expected growth
factor also explains the Et[d

2I/A] and Et[d
3I/A] deciles. The high-minus-low alphas are

only −0.05% (t = −0.43) and 0.05 (t = 0.38), the mean absolute alphas 0.07% and 0.09%,
and the GRS p-values 0.49 and 0.12, respectively.

3.3 LIMITATIONS

Unlike investment and profitability, expected growth is unobservable. Estimating expected
growth requires us to take a stand on its specification and the list of predictors to be
included. While the t-value of the expected growth factor far exceeds the existing hurdles
of multiple testing, the factor depends on its specification, and crucially on operating cash
flows, Cop, as a predictor of future growth.7 While we do provide strong intuition on
why cash flows should be linked to future growth (and reliable evidence on this linkage),
we emphasize a minimalistic interpretation of our extensive evidence on factor models as
dimension reduction. In particular, among the 52 (out of 150) anomalies that the q-factor
model cannot explain, cash flows seem to be an important, missing factor.

To what extent do our cross-sectional growth forecasts add to a mechanical combination
of the three predictors? To this end, we form an alternative expected growth factor on the
composite score that equal-weights a stock’s percentile rankings of the log of Tobin’s q,
Cop, and dRoe (each realigned to yield a positive slope in forecasting returns). The alterna-
tive expected growth factor earns on average 0.86% per month (t = 9.37), and its q-factor
alpha is 0.45% (t = 6.33) (the Supplementary Appendix). The correlation between the
alternative and benchmark expected growth factors is far from perfect, 0.63. The bench-
mark q5 model subsumes the alternative expected growth factor, with an alpha of 0.12%

7 This aspect is not that different from the influential stock market predictability lit-
erature, in which the predictive results depend on the predictors employed (Welch and
Goyal, 2008), as well as the conditional asset pricing literature, in which the pricing results
depend on the variables in the conditional beta specifications (Ghysels, 1998).
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(t = 1.75), but the alternative q5 model cannot subsume the benchmark expected growth
factor, with an alpha of 0.48% (t = 6.4). As such, our growth forecasts capture valuable
pricing information that goes beyond the simple, mechanical rule of equal-weighting.

The expected growth factor is robust to changes in the left-hand side variable of the
cross-sectional forecasting regressions. As noted, because firm-level investment-to-assets
(I/A, net asset growth) is frequently negative, we forecast future investment-to-assets
changes, dτ I/A, for τ = 1, 2, and 3 years. We have explored the alternative of forecasting
the log growth rate of gross asset growth, denoted dlogτ (1+I/A). The results are largely
similar (the Supplementary Appendix). In particular, the alternative expected growth
factor earns on average 0.84% per month (t = 10.24), with a q-factor alpha of 0.67%
(t = 9.62). Its correlation with the benchmark expected growth factor is 0.99.

The expected growth factor is also relatively robust to changes in the right-hand side
variables. We start by adding past investment growth to the right-hand side. Adding
1-year-lagged investment-to-assets changes, d−1I/A, does not affect the results (the Sup-
plementary Appendix). Its slope in the forecasting regression of d1I/A is weakly negative.
The resulting expected growth factor earns on average 0.82% per month (t = 10.35), with
a q-factor alpha of 0.71% (t = 9.38). Adding 2-quarter-lagged year-to-year investment-to-
assets changes, d−1/2I/A, yields a negative slope of −0.15 in the forecasting regression,
and the expected growth premium falls slightly to 0.76% (t = 10.43), with a q-factor alpha
of 0.64% (t = 9.93). Adding 1-quarter-lagged year-to-year investment-to-assets changes,
d−1/4I/A, raises (in magnitude) the slope further to −0.22, and the expected growth pre-
mium still remains at 0.71% (t = 9.93), with a q-factor alpha of 0.61% (t = 8.73). However,
if we include current investment-to-assets changes, d0I/A, the slope rises to −0.45, and
the expected growth premium falls to 0.47% (t = 7.02), with a q-factor alpha of 0.44%
(t = 5.92). The large slope is mostly driven by a mechanical relation in the forecasting re-
gression because current investment-to-assets appears on both left- and right-hand sides.8

Barro (1990) and Morck, Shleifer, and Vishny (1990) propose two alternative invest-
ment growth specifications. Barro uses lagged investment growth, 1-year ex-dividend stock
market return, the first difference of the ratio of after-tax corporate profits to sales, the
log growth of Tobin’s q, and the growth of gross national product to forecast aggregate
investment growth. Morck et al. regress firm-level capital expenditure growth contempo-
raneously on the growth of earnings before depreciation, sales growth, new share dummy,
new debt dummy, and lagged market regression residuals. We add these variables into our
expected growth specification to evaluate its sensitivity. We drop the log q growth from
Barro to avoid multicollinearity because log(q) is already in our specification. We lag all
the variables from Morck et al. to avoid look-ahead bias in our forecasting regressions.

Adding Barro’s (1990) variables (with 1-year-lagged investment-to-assets changes,
d−1I/A) yields an expected growth premium of 0.59% per month (t = 5.52), with a q-
factor alpha of 0.31% (t = 1.99) (the Supplementary Appendix). Adding the variables
from Morck, Shleifer, and Vishny (1990) into our specification yields an expected growth
premium of 0.63% (t = 7.07), with a q-factor alpha of 0.43% (t = 3.35). To reiterate, our

8 Imposing a time lag between a dependent variable and its lagged value in a forecasting
regression to avoid any mechanical relation is standard in empirical finance. For instance, in
the monthly sorts of momentum portfolios, it is standard to impose a 1-month lag between
prior and subsequent returns to avoid the short-term reversal due to market microstructure
frictions (Jegadeesh and Titman, 1993). As such, we emphasize the robustness when adding
1-year-lagged investment-to-assets changes, d−1I/A, to the forecasting regression.
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expected growth factor depends on its specification and the list of predictors to be included.
In particular, the factor depends crucially on operating cash flows as a key predictor of fu-
ture growth. While the underlying intuition based on the growing importance of intangible
investments seems clear and the t-value of 10.27 for the factor premium exceeds multiple
testing hurdles, we emphasize the minimalistic interpretation of dimension reduction.9

4. Stress-testing Factor Models

The most demanding test of the q5 model is to confront it with a vast set of testing anomaly
portfolios. We also conduct a large-scale empirical horse race with other competing factor
models. We set up the playing field in Section 4.1, discuss the overall performance of
different factor models in Section 4.2, and detail individual regressions for prominent
anomalies in Section 4.3.

4.1 THE PLAYING FIELD

We describe testing portfolios as well as different factor models in the empirical horse race.

4.1.1 Testing Portfolios

We use the 150 anomalies that are significant at the 5% level with NYSE breakpoints
and value-weighted returns from January 1967 to December 2018 (Hou, Xue, and Zhang,
2019). Table 4 provides the detailed list, which includes 39, 15, 26, 40, 27, and 3 across
the momentum, value-versus-growth, investment, profitability, intangibles, and trading
frictions categories, respectively.10

9 We echo Fama and French (2018) when adding the momentum factor, UMD, into their 6-
factor specification: “We include momentum factors (somewhat reluctantly) now to satisfy
insistent popular demand. We worry, however, that opening the game to factors that seem
empirically robust but lack theoretical motivation has a destructive downside: the end of
discipline that produces parsimonious models and the beginning of a dark age of data
dredging that produces a long list of factors with little hope of sifting through them in a
statistically reliable way (p. 237).”
10 In their original 1967–2016 sample, Hou, Xue, and Zhang (2019) report 158 significant
anomalies, including 36, 29, 28, 35, 26, and 4 across the momentum, value-versus-growth,
investment, profitability, intangibles, and trading frictions categories, respectively. We
extend the sample through December 2018. The big news is in the value-versus-growth
category, in which the number of significance drops drastically from 29 to 15. The number
of significance increases slightly in the momentum and profitability categories but stays
largely the same in the other three categories.
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Table 4 The List of Significant Anomalies To Be Explained

Panel A: Momentum (39)

Sue1 Earnings surprise (1-month period), Abr1 Cumulative abnormal returns
Foster, Olsen, and Shevlin (1984) around earnings announcements

(1-month period), Chan,
Jegadeesh, and Lakonishok (1996)

Abr6 Cumulative abnormal returns Abr12Cumulative abnormal returns
around earnings announcements around earnings announcements
(6-month period), Chan, (12-month period), Chan,
Jegadeesh, and Lakonishok (1996) Jegadeesh, and Lakonishok (1996)

Re1 Revisions in analysts’ forecasts Re6 Revisions in analysts’ forecasts
(1-month period), Chan, (6-month period), Chan,
Jegadeesh, and Lakonishok (1996) Jegadeesh, and Lakonishok (1996)

R61 Price momentum (6-month prior R66 Price momentum (6-month prior
returns, 1-month period), returns, 6-month period),
Jegadeesh and Titman (1993) Jegadeesh and Titman (1993)

R612 Price momentum (6-month prior R111 Price momentum (11-month prior
returns, 12-month period), returns, 1-month period),
Jegadeesh and Titman (1993) Fama and French (1996)

R116 Price momentum, (11-month prior R1112 Price momentum, (11-month prior
returns, 6-month period), returns, 12-month period),
Fama and French (1996) Fama and French (1996)

Im1 Industry momentum (1-month period), Im6 Industry momentum (6-month period),
Moskowitz and Grinblatt (1999) Moskowitz and Grinblatt (1999)

Im12 Industry momentum (12-month period), Rs1 Revenue surprise (1-month period),
Moskowitz and Grinblatt (1999) Jegadeesh and Livnat (2006)

dEf1 Analysts’ forecast change dEf6 Analysts’ forecast change
(1-month period), Hawkins, (6-month period), Hawkins,
Chamberlin, and Daniel (1984) Chamberlin, and Daniel (1984)

dEf12Analysts’ forecast change Nei1 # of consecutive quarters with earnings
(12-month period), Hawkins, increases (1-month period),
Chamberlin, and Daniel (1984) Barth, Elliott, and Finn (1999)

52w6 52-week high (6-month period), 52w1252-week high (12-month period),
George and Hwang (2004) George and Hwang (2004)

ε66 6-month residual momentum ε612 6-month residual momentum
(6-month period), (12-month period),
Blitz, Huij, and Martens (2011) Blitz, Huij, and Martens (2011)

ε111 11-month residual momentum ε116 11-month residual momentum
(1-month period), (6-month period),
Blitz, Huij, and Martens (2011) Blitz, Huij, and Martens (2011)

ε1112 11-month residual momentum Sm1 Segment momentum
(12-month period), (1-month period),
Blitz, Huij, and Martens (2011) Cohen and Lou (2012)

Sm12 Segment momentum Ilr1 Industry lead-lag effect in prior returns
(12-month period), (1-month period), Hou (2007)
Cohen and Lou (2012)

Ilr6 Industry lead-lag effect in prior returns Ilr12 Industry lead-lag effect in prior returns
(6-month period), Hou (2007) (12-month period), Hou (2007)

Ile1 Industry lead-lag effect in earnings newsCm1 Customer momentum (1-month
(1-month period), Hou (2007) period), Cohen and Frazzini (2008)
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Cm12 Customer momentum (12-month Sim1 Supplier industries momentum (1-month
period), Cohen and Frazzini (2008) period), Menzly and Ozbas (2010)

Cim1 Customer industries momentum (1-month Cim6 Customer industries momentum (6-month
period), Menzly and Ozbas (2010) period), Menzly and Ozbas (2010)

Cim12Customer industries momentum (12-month
period), Menzly and Ozbas (2010)

Panel B: Value-versus-growth (15)

Bm Book-to-market equity, Epq1 Quarterly earnings-to-price
Rosenberg, Reid, and Lanstein (1985) (1-month period)

Epq6 Quarterly earnings-to-price Epq12Quarterly earnings-to-price
(6-month period) (12-month period)

Cpq1 Quarterly Cash flow-to-price Cpq6 Quarterly Cash flow-to-price
(1-month period) (6-month period)

Nop Net payout yield, Em Enterprise multiple,
Boudoukh et al. (2007) Loughran and Wellman (2011)

Emq1 Quarterly enterprise multiple Sp Sales-to-price,
(1-month period) Barbee, Mukherji, and Raines (1996)

Spq1 Quarterly sales-to-price Spq6 Quarterly sales-to-price
(1-month period) (6-month period)

Spq12 Quarterly sales-to-price Ocp Operating cash flow-to-price,
(12-month period) Desai, Rajgopal, and Venkatachalam (2004)

Ocpq1Quarterly operating cash flow-to-price
(1-month period)

Panel C: Investment (26)

Ia Investment-to-assets, Iaq6 Quarterly investment-to-assets
Cooper, Gulen, and Schill (2008) (6-month period)

Iaq12 Quarterly investment-to-assets dPia (Changes in PPE and inventory)/assets,
(12-month period) Lyandres, Sun, and Zhang (2008)

Noa Net operating assets, dNoa Changes in net operating assets,
Hirshleifer et al. (2004) Hirshleifer et al. (2004)

dLno Change in long-term net operating assets, Ig Investment growth,
Fairfield, Whisenant, and Yohn (2003) Xing (2008)

2Ig Two-year investment growth, Nsi Net stock issues,
Anderson and Garcia-Feijoo (2006) Pontiff and Woodgate (2008)

dIi % change in investment−% change in industryCei Composite equity issuance,
investment, Abarbanell and Bushee (1998) Daniel and Titman (2006)

Ivg Inventory growth, Belo and Lin (2012) Ivc Inventory changes, Thomas and Zhang (2002)

Oa Operating accruals, dWc Change in net non-cash working capital,
Sloan (1996) Richardson et al. (2005)

dCoa Change in current operating assets, dNco Change in net non-current operating assets,
Richardson et al. (2005) Richardson et al. (2005)

dNca Change in non-current operating assets, dFin Change in net financial assets,
Richardson et al. (2005) Richardson et al. (2005)

dFnl Change in financial liabilities, dBe Change in common equity,
Richardson et al. (2005) Richardson et al. (2005)

Dac Discretionary accruals, Poa Percent operating accruals,
Xie (2001) Hafzalla, Lundholm, and Van Winkle (2011)

Pta Percent total accruals, Pda Percent discretionary accruals
Hafzalla, Lundholm, and Van Winkle (2011)
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Panel D: Profitability (40)

Roe1 Return on equity (1-month period), Roe6 Return on equity (6-month period),
Hou, Xue, and Zhang (2015) Hou, Xue, and Zhang (2015)

dRoe1 Change in Roe (1-month period) dRoe6 Change in Roe (6-month period)

dRoe12 Change in Roe (12-month period), Roa1 Return on assets (1-month period),
Balakrishnan, Bartov, and Faurel (2010)

dRoa1 Change in Roa (1-month period) dRoa6 Change in Roa (6-month period)

Ato Asset turnover, Soliman (2008) Cto Capital turnover, Haugen and Baker (1996)

Rnaq1 Quarterly return on net operating assets Rnaq6 Quarterly return on net operating assets
(1-month period) (6-month period)

Atoq1 Quarterly asset turnover Atoq6 Quarterly asset turnover
(1-month period) (6-month period)

Atoq12 Quarterly asset turnover Ctoq1 Quarterly capital turnover
(12-month period) (1-month period)

Ctoq6 Quarterly capital turnover Ctoq12Quarterly capital turnover
(6-month period) (12-month period)

Gpa Gross profits-to-assets, Glaq1 Gross profits-to-lagged assets
Novy-Marx (2013) (1-month period)

Glaq6 Gross profits-to-lagged assets Glaq12Gross profits-to-lagged assets
(6-month period) (12-month period)

Oleq1 Operating profits-to-lagged equity Oleq6 Operating profits-to-lagged equity
(1-month period) (6-month period)

Opa Operating profits-to-assets, Olaq1 Operating profits-to-lagged assets
Ball et al. (2015) (1-month period)

Olaq6 Operating profits-to-lagged assets Olaq12Operating profits-to-lagged assets
(6-month period) (12-month period)

Cop Cash-based operating profitability, Cla Cash-based operating profits-to-
Ball et al. (2016) lagged assets

Claq1 Cash-based operating profits-to-lagged Claq6 Cash-based operating profits-to-lagged
assets (1-month period) assets (6-month period)

Claq12 Cash-based operating profits-to-lagged Fq1 Quarterly F-score (1-month period)
assets (12-month period)

Fq6 Quarterly F-score (6-month period) Fq12 Quarterly F-score (12-month period)

Fpq6 Failure probability (6-month period), Oq1 Quarterly O-score
Campbell, Hilscher, and Szilagyi (2008) (1-month period)

Tbiq12 Quarterly taxable income-to-book income Sgq1 Quarterly sales growth
(12-month period) (1-month period)

Panel E: Intangibles (27)

Oca Organizational capital/assets, Ioca Industry-adjusted organizational capital
Eisfeldt and Papanikolaou (2013) /assets, Eisfeldt and Papanikolaou (2013)

Adm Advertising expense-to-market, Rdm R&D-to-market, Chan, Lakonishok,
Chan, Lakonishok, and Sougiannis (2001) and Sougiannis (2001)

Rdmq1 Quarterly R&D-to-market (1-month period) Rdmq6Quarterly R&D-to-market (6-month period)

Rdmq12Quarterly R&D-to-market (12-month period)Rdsq6 Quarterly R&D-to-sales (6-month period)

Rdsq12 Quarterly R&D-to-sales (12-month period) Ol Operating leverage, Novy-Marx (2011)

Olq1 Quarterly operating leverage Olq6 Quarterly operating leverage
(1-month period) (6-month period)
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Olq12 Quarterly operating leverage Hs Industry concentration (sales),
(12-month period) Hou and Robinson (2006)

Rer Real estate ratio, Tuzel (2010) Eprd Earnings predictability, Francis et al. (2004)

Etl Earnings timeliness, Almq1 Quarterly market assets liquidity
Francis et al. (2004) (1-month period)

Almq6 Quarterly market assets liquidity Almq12Quarterly market assets liquidity
(6-month period) (12-month period)

R1
a Year 1-lagged return, annual R1

n Year 1-lagged return, nonannual
Heston and Sadka (2008) Heston and Sadka (2008)

R
[2,5]
a Years 2–5 lagged returns, annual R

[6,10]
a Years 6–10 lagged returns, annual

Heston and Sadka (2008) Heston and Sadka (2008)

R
[6,10]
n Years 6–10 lagged returns, nonannual R

[11,15]
a Years 11–15 lagged returns, annual

Heston and Sadka (2008) Heston and Sadka (2008)

R
[16,20]
a Years 16–20 lagged returns, annual

Heston and Sadka (2008)

Panel F: Trading frictions (3)

Dtv12 Dollar trading volume (12-month period), Isff1 Idiosyncratic skewness per the 3-factor
Brennan, Chordia, and Subrahmanyam (1998) model (1-month period)

Isq1 Idiosyncratic skewness per the q-factor model
(1-month period)

The 150 anomalies (significant with NYSE breakpoints and value-weighted returns) are grouped
into six categories: (i) momentum; (ii) value-versus-growth; (iii) investment; (iv) profitability;
(v) intangibles; and (vi) trading frictions. The number in parenthesis in the title of a panel is
the number of anomalies in that category. For each anomaly variable, we list its symbol, brief
description, and its academic source.

The list contains 52 anomalies that cannot be explained by the q-factor model. Promi-
nent examples include cumulative abnormal stock returns around quarterly earnings an-
nouncement dates (Chan, Jegadeesh, and Lakonishok, 1996), customer momentum (Cohen
and Frazzini, 2008), and segment momentum (Cohen and Lou, 2012) in the momentum
category; net payout yield (Boudoukh et al., 2007) in the value-versus-growth category;
operating accruals (Sloan, 1996), discretionary accruals (Xie, 2001), net operating assets
(Hirshleifer et al., 2004), and net stock issues (Pontiff and Woodgate, 2008) in the invest-
ment category; asset turnover (Soliman, 2008) and operating profits-to-assets (Ball et al.,
2015) in the profitability category; R&D-to-market (Chan, Lakonishok, and Sougiannis,
2001) and seasonalities (Heston and Sadka, 2006) in the intangibles category.

4.1.2 Factor Models

In addition to the q and q5 models, we examine six other models, including (i) the Fama-
French (2015) 5-factor model; (ii) the Fama-French (2018) 6-factor model with RMW;
(iii) the Fama-French alternative 6-factor model with RMWc; (iv) the Barillas-Shanken
(2018) 6-factor model; (v) the Stambaugh-Yuan (2017) 4-factor model; and (vi) the Daniel-
Hirshleifer-Sun (2019) 3-factor model. As shown in Hou et al. (2019), the explanatory
power of the Stambaugh-Yuan and Daniel et al. models is exaggerated because both devi-
ate from the standard factor contribution per Fama and French (1993). To level the playing
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Table 5 Monthly Sharpe Ratios (January 1967–December 2018)

Panel A: Sharpe ratios for individual factors

RMkt RMe RI/A RRoe REg SMB HML CMA

0.112 0.094 0.200 0.218 0.444 0.074 0.112 0.149

RMW RMWc UMD HMLm MGMT PERF FIN PEAD

0.125 0.186 0.151 0.083 0.195 0.163 0.104 0.320

Panel B: Maximum Sharpe ratios for factor models

q q5 FF5 FF6 FF6c BS6 SY4 DHS

0.416 0.634 0.322 0.365 0.434 0.475 0.412 0.416

Panel A reports Sharpe ratios for the market, size, investment, and Roe factors in the Hou-
Xue-Zhang (2015) q-factor model (q), RMkt, RMe, RI/A, and RRoe, respectively; the expected

growth factor, REg, in the q5 model (q5); the size, value, investment, and profitability factors
in the Fama-French (2015) 5-factor model (FF5), SMB, HML, CMA, and RMW, respectively;
the momentum factor, UMD, in the Fama-French (2018) 6-factor model (FF6); the cash-based
profitability factor, RMWc, in the Fama-French (2018) alternative 6-factor model; the monthly
formed value factor, HMLm, in the Barillas-Shanken (2018) 6-factor model (BS6); the management
(MGMT) and performance (PERF) factors in the Stambaugh-Yuan (2017) 4-factor model (SY4);
and the financing (FIN) and post-earnings-announcement-drift (PEAD) factors in the Daniel-
Hirshleifer-Sun 3-factor model (DHS). Panel B reports the maximum Sharpe ratios for each factor

model, calculated as

√
μ′
f
V −1
f

μf , in which μf is the vector of mean factor returns in the factor

model, and Vf is the variance-covariance matrix for the vector of factor returns.

field, we use the replicated versions of the two models per the standard construction. The
Supplementary Appendix describes these factor models in detail.

Table 5 reports monthly Sharpe ratios for individual factors and maximum Sharpe
ratios for different factor models. The maximum Sharpe ratio for a given factor model is

calculated as
√

μ′
fV

−1
f μf , in which μf is the vector of mean factor returns, and Vf the

variance-covariance matrix of the factor returns in the model (MacKinlay 1995). From
Panel A, the individual Sharpe ratio is the highest, 0.44, for the expected growth factor,
REg, followed by the PEAD factor, 0.32. The investment factor, RI/A, has a Sharpe ratio
of 0.2, which is higher than 0.15 for CMA. The Roe factor, RRoe, has a Sharpe ratio of
0.22, which is higher than 0.13 for RMW and 0.19 for RMWc.

Panel B shows that the q5 model has the highest maximum Sharpe ratio, 0.63, among
all the factor models. The Sharpe ratio for the q-factor model is 0.42, which compares
favorably with 0.37 for the Fama-French (2018) 6-factor model, but falls slightly short of
0.43 for their alternative 6-factor model. The Barillas-Shanken (2018) 6-factor model has
a higher Sharpe ratio of 0.48 than the q-factor model. Based on this evidence, Barillas and
Shanken argue that their 6-factor model is a better model than the q-factor model and
testing assets are largely irrelevant. Our extensive evidence based on 150 anomalies casts
doubt on their conclusion (Sections 4.2 and 4.3).
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4.2 THE BIG PICTURE OF MODEL PERFORMANCE

4.2.1 Performance Across 150 Anomalies

Panel A of Table 6 shows the overall performance of different factor models in explaining
the 150 significant anomalies. The q5 model is the overall best performer. The q-factor
model performs well too, with a lower number of significant high-minus-low alphas but a
higher number of rejections by the GRS test than the Fama-French 6-factor model and
the Stambaugh-Yuan model. The Fama-French 5-factor, the Barillas-Shanken, and the
Daniel-Hirshleifer-Sun models all perform poorly.

The q-factor model leaves 52 significant high-minus-low alphas with |t| ≥ 1.96 and 25
with |t| ≥ 3. The average magnitude of high-minus-low alphas is 0.28% per month. Across
all 150 sets of deciles, the mean absolute alpha is 0.11%, but the q-factor model is still
rejected by the GRS test at the 5% level in 101 sets of deciles. The q5 model improves
on the q-factor model substantially. The average magnitude of high-minus-low alphas is
0.19% per month. The number of significant high-minus-low alphas is 23 with |t| ≥ 1.96
and 6 with |t| ≥ 3, dropping from 52 and 25, respectively, in the q-factor model. The mean
absolute alpha across all the deciles is 0.1%. Finally, the q5 model is rejected by the GRS
test in only 57 sets of deciles, and this number of GRS rejections represents a reduction
of 44% from 101 in the q-factor model.

The Fama-French 5-factor model performs poorly. The model leaves 100 high-minus-low
alphas with |t| ≥ 1.96 and 69 with |t| ≥ 3. Both are the highest across all factor models. The
average magnitude of high-minus-low alphas is 0.43% per month. The model is rejected by
the GRS test in 112 sets of deciles. The Fama-French 6-factor model performs better. The
numbers of high-minus-low alphas with |t| ≥ 1.96 and |t| ≥ 3 fall to 74 and 37, respectively.
The average magnitude of high-minus-low alphas drops to 0.3%, and the number of GRS
rejections to 91. However, other than the lower number of GRS rejections, the 6-factor
model underperforms the q-factor model.

Replacing RMW with RMWc in the Fama-French 6-factor model improves its per-
formance. The average magnitude of high-minus-low alphas falls to 0.27% per month,
which is on par with the q-factor model. The number of significant high-minus-low alphas
with |t| ≥ 1.96 drops to 59, which is still higher than 52 in the q-factor model. Finally,
the number of GRS rejections falls to 71, which is substantially lower than 101 in the
q-factor model but still higher than 57 in the q5 model. The q5 model also outperforms
the alternative 6-factor model with RMWc in all the other metrics.

The Barillas-Shanken 6-factor model performs poorly. The average magnitude of high-
minus-low alphas is 0.29% per month. The numbers of significant high-minus-low alphas
with |t| ≥ 1.96 and |t| ≥ 3 are 63 and 37, respectively. The mean absolute alpha across
all deciles is 0.13%. The number of GRS rejections is 132 (out of 150). This number of
rejections is the highest among all factor models.

The Stambaugh-Yuan 4-factor model performs well. It underperforms the q-factor
model in terms of the number of high-minus-low alphas with |t| ≥ 1.96 (64 versus 52)
but outperforms in the number of GRS rejections (87 versus 101). However, the q5 model
substantially outperforms the Stambaugh-Yuan model in all metrics.

Finally, the Daniel-Hirshleifer-Sun 3-factor model performs poorly. The average mag-
nitude of high-minus-low alphas is 0.37% per month, which is the second highest among
all factor models. The numbers of significant high-minus-low alphas with |t| ≥ 1.96 and
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|t| ≥ 3 are 70 and 33, respectively. The mean absolute alpha across all 150 sets of deciles
is 0.14%, which is the highest among all models. The number of GRS rejections is 97.11

4.2.2 Performance Across Each Category of Anomalies

Panels B–G of Table 6 show that the q5 model improves on the q-factor model across most
of the six categories of anomalies, especially in the investment and profitability categories.

Momentum From Panel B of Table 6, the improvement in the momentum category
is noteworthy. Across the 39 significant momentum anomalies, the average magnitude of
high-minus-low q5 alphas is 0.17% per month (0.25% in the q-factor model). The q5 model
reduces the number of significant high-minus-low alphas with |t| ≥ 1.96 from 11 to 4 (3 to
1 with |t| ≥ 3), the mean absolute alpha from 0.1% per month slightly to 0.09%, and the
number of GRS rejections from 24 to 15.

The Fama-French 5-factor model shows no explanatory power for momentum, leaving
37 out of 39 high-minus-low alphas with |t| ≥ 1.96 (29 with |t| ≥ 3) as well as the GRS
rejections in 36 sets of deciles. The average magnitude of high-minus-low alphas, 0.62% per
month, and the mean absolute alpha across all deciles, 0.15%, are the highest among all
factor models. Even with UMD, the Fama-French 6-factor model still leaves 19 high-minus-
low alphas significant with |t| ≥ 1.96 and 6 with |t| ≥ 3. The 6-factor model is rejected by
the GRS test in 21 sets of deciles. Changing RMW to RMWc in the Fama-French 6-factor
model improves the metrics to 14, 5, and 18, respectively. However, the alternative 6-
factor model still underperforms the q5 model in all metrics, including the number of GRS
rejections (18 versus 15) and the number of significant high-minus-low alphas (14 versus
4 with |t| ≥ 1.96 and 5 versus 1 with |t| ≥ 3).

Other than the slightly lower average magnitude of high-minus-low alphas, 0.23% versus
0.25% per month, the Barillas-Shanken 6-factor model underperforms the q-factor model.
The numbers of high-minus-low alphas with |t| ≥ 1.96 and |t| ≥ 3 are 12 and 4, in contrast
to 11 and 3 in the q-factor model, respectively. The mean absolute alpha is 0.12%, and the
number of GRS rejections 33. Both are higher than 0.1% and 24 in the q-factor model,
respectively. The Stambaugh-Yuan 4-factor model performs poorly, leaving 19 high-minus-
low alphas with |t| ≥ 1.96 and 6 with |t| ≥ 3. The average magnitude of high-minus-low
alphas is 0.32% (0.25% in the q-factor model). Finally, the Daniel-Hirshleifer-Sun 3-factor
model underperforms the q-factor model with a higher mean absolute alpha of 0.14% and a
higher number of GRS rejections of 26. However, its number of significant high-minus-low
alphas with |t| ≥ 1.96 is slightly lower at 10.

Value-versus-growth Panel C of Table 6 shows that among the 15 value-versus-growth
anomalies, the role of the expected growth factor is limited. The q-factor model leaves 1
high-minus-low alphas with |t| ≥ 1.96 (3 in the q5 model) and 0 with |t| ≥ 3 (0 in the q5

model). The average magnitude of high-minus-low alphas is 0.21% per month, the mean

11 The Supplementary Appendix shows that an alternative Daniel-Hirshleifer-Sun model
with the PEAD factor based on Abr only still underperforms the q-factor and q5 models
from July 1972 to December 2018. The average magnitude of high-minus-low alphas is
0.32% per month (0.28% in the q-factor model and 0.2% in the q5 model in the same
sample), the number of high-minus-low alphas with |t| ≥ 1.96 is 59 (49 in q and 23 in q5),
the number of high-minus-low alphas with |t| ≥ 3 is 13 (23 in q and 5 in q5), the mean
absolute alpha 0.12% (0.12% in q and 0.1% in q5), and the number of GRS rejections 67
(87 in q and 53 in q5).
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absolute alpha 0.11%, and the number of GRS rejections 8, compared with 0.22%, 0.13%,
and 7 in the q5 model, respectively.

The Fama-French 5-factor model performs very well in this category. The average mag-
nitude of high-minus-low alphas is 0.15% per month, the number of high-minus-low alphas
with |t| ≥ 1.96 is only 2 (0 with |t| ≥ 3), the mean absolute alpha 0.1%, and the number
of GRS rejections 7. This performance benefits from having both CMA and HML, while
giving up on momentum. Including UMD per the 6-factor model raises the average mag-
nitude of high-minus-low alphas to 0.19%, the number of alphas with |t| ≥ 1.96 to 4, and
the number of GRS rejections to 9. Adopting RMWc in the 6-factor model improves these
metrics slightly to 0.17%, 3, and 6, respectively.

The Barillas-Shanken 6-factor model performs poorly. The average magnitude of high-
minus-low alphas is 0.23% per month, the numbers of alphas with |t| ≥ 1.96 and |t| ≥ 3 are
6 and 2, respectively, and the mean absolute alpha 0.13%. More important, the number of
GRS rejections is 14 (out of 15 anomalies). Relative to the q-factor model, the Stambaugh-
Yuan 4-factor model yields higher numbers of significant high-minus-low alphas, 4 with
|t| ≥ 1.96 and 1 with |t| ≥ 3 (1 and 0 in the q-factor model), and a higher number of GRS
rejections, 9 (8 in the q-factor model).

Finally, the Daniel-Hirshleifer-Sun 3-factor model performs very poorly. The average
magnitude of the high-minus-low alphas is the highest among all models, 0.78% per month.
All 15 high-minus-low alphas are significant with |t| ≥ 1.96 (13 with |t| ≥ 3). All 15 sets
of deciles yield rejections in the GRS test. The mean absolute alpha of 0.23% is also the
highest among all models. Intuitively, the value-minus-growth deciles tend to have large
and negative PEAD factor loadings, going in the wrong direction in explaining average
returns, as well as positive but smaller FIN factor loadings, going in the right direction
(untabulated). Because the PEAD premium is larger than the FIN premium, the Daniel-
Hirshleifer-Sun model exacerbates the value-versus-growth anomalies.

Investment Panel D of Table 6 shows that the q5 model is the best performer in the
investment category. All but one of the 26 high-minus-low alphas have |t| ≥ 1.96, and none
have |t| ≥ 3. The number of GRS rejections is 6. The average magnitude of high-minus-low
alphas is 0.1% per month, and the mean absolute alpha 0.08%. This performance improves
substantially on the q-factor model, which leaves 9 high-minus-low alphas with |t| ≥ 1.96
and 4 with |t| ≥ 3, as well as 19 GRS rejections.

The Fama-French 6-factor model is largely comparable with the q-factor model. While
outperforming the q-factor model, the alternative 6-factor model with RMWc underper-
forms the q5 model, leaving 8 high-minus-low alphas with |t| ≥ 1.96 (1 in q5) and 2 with
|t| ≥ 3 (0 in q5) as well as 7 GRS rejections (6 in q5). The average magnitude of high-
minus-low alphas is 0.18% (0.1% in q5).

The Barillas-Shanken 6-factor model is comparable with the q-factor model, with a
slightly lower number of high-minus-low alphas with |t| ≥ 1.96 (8 versus 9), but a higher
number of GRS rejections (24 versus 19). The Stambaugh-Yuan 4-factor model outper-
forms the q-factor model slightly but underperforms the q5 model substantially. The av-
erage absolute high-minus-low alpha is 0.19% (0.1% in q5), the number of high-minus-low
alphas with |t| ≥ 1.96 is 8 (1 in q5), and the number of GRS rejections is 17 (6 in q5).
Finally, the Daniel-Hirshleifer-Sun 3-factor model performs the worst, with the highest av-
erage magnitude of high-minus-low alphas, 0.34%, the highest number of high-minus-low
alphas with |t| ≥ 1.96, 20, and the second highest number of GRS rejections, 22.

Profitability From Panel E of Table 6, the q5 model is the best performer in the
profitability category. The model leaves 5 out of 40 high-minus-low alphas with |t| ≥ 1.96
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(16 in the q-factor model) and 1 with |t| ≥ 3 (6 in q). The average absolute high-minus-low
alpha is 0.14% per month (0.25% in q), the mean absolute alpha 0.09% (0.10% in q), and
the number of GRS rejections 14 (28 in q).

The other factor models underperform the q5 model, often substantially. The Fama-
French alternative 6-factor model with RMWc has a higher number of GRS rejections,
21, a higher average absolute high-minus-low alpha, 0.26%, as well as higher numbers of
high-minus-low alphas with |t| ≥ 1.96, 18, and with |t| ≥ 3, 7, than the q5 model. The 6-
factor model with RMW performs worse than the alternative 6-factor model. The Barillas-
Shanken 6-factor model underperforms the q-factor model in all metrics. Also, other than
fewer GRS rejections (24 versus 28), the Stambaugh-Yuan 4-factor model also under-
performs the q-factor model. The Daniel-Hirshleifer-Sun 3-factor model outperforms the
q-factor model, with a lower average magnitude of high-minus-low alphas, 0.18%, a lower
number of high-minus-low alphas with |t| ≥ 1.96, 6, and a lower number of GRS rejections,
13. However, even this performance is weaker than that of the q5 model.

Intangibles and Trading Frictions Panel F shows that the q5 model is the best
performer in the intangibles category. The model leaves 8 out of 27 high-minus-low alphas
with |t| ≥ 1.96 (4 with |t| ≥ 3). The average magnitude of high-minus-low alphas is 0.36%
per month, the mean absolute alpha 0.15%, and the number of GRS rejections 13. The
second best performer is the Stambaugh-Yuan model, with only slightly worse metrics than
the q5 model. The q-factor model leaves 13 high-minus-low alphas with |t| ≥ 1.96 and 11
with |t| ≥ 3. The average magnitude of high-minus-low alphas is 0.47%, the mean absolute
alpha 0.18%, and the number of GRS rejections 19. The Fama-French and Barillas-Shanken
models deliver largely similar performance as the q-factor model. The Daniel-Hirshleifer-
Sun model again performs poorly, with the highest average absolute high-minus-low alpha,
0.6%, and the second highest number of high-minus-low alphas with |t| ≥ 1.96, 16.

From Panel G, with only 3 trading frictions anomalies, the performance of all models is
largely similar, except for the Daniel-Hirshleifer-Sun model, which has the highest average
magnitude of high-minus-low alphas, 0.5% per month, and the highest mean absolute
alpha, 0.18%. The q5 model leaves 2 high-minus-low alphas with |t| ≥ 1.96 but 0 with
|t| ≥ 3. The average magnitude of high-minus-low alphas is 0.19%, the mean absolute
alpha 0.08%, and the number of GRS rejections 2.

4.2.3 Testing Deciles Formed on Composite Scores

As an alternative way to summarize the overall performance of different factor models, we
form composite scores across all 150 anomalies as well as across each of the 6 categories
of anomalies. We then use deciles formed on the composite scores as testing portfolios in
factor regressions. Although containing less disaggregated information than Table 6, this
approach directly quantifies to what extent a given category (as well as all) of anomalies
can be explained by a given factor model.

For a given set of anomalies, we construct its composite score for a stock by equal-
weighting the stock’s percentile rankings for the anomalies in question. Because anomalies
forecast returns with different signs, we realign the anomalies to yield positive slopes
in forecasting returns before forming the composite score. At the beginning of month t,
we split stocks into deciles based on the NYSE breakpoints of the composite score that
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aggregates a given set of anomalies.12 We calculate value-weighted decile returns for month
t and rebalance the deciles at the beginning of month t+ 1.

Table 7 shows that the q5 model is the overall best performer. Aggregating all 150
anomalies, the high-minus-low decile is on average 1.69% per month (t = 9.62). The high-
minus-low alpha is the lowest in the q5 model, 0.37%, albeit significant (t = 2.62). The
high-minus-low decile has large, positive loadings on the investment, Roe, and expected
growth factors, 0.57, 0.81, and 0.74 (t = 6.28, 8.48, and 7.81), respectively. The mean
absolute alpha across all deciles is also the lowest in the q5 model, 0.1%, but the model
is still rejected by the GRS test (p = 0.01). For the q-factor model, the high-minus-low
alpha is 0.86% (t = 5.64), and the mean absolute alpha 0.16%. For comparison, the Fama-
French 6-factor alpha for the high-minus-low decile is 0.94% (t = 7.46), and the alternative
6-factor alpha with RMWc is 0.82% (t = 6.77). The mean absolute alphas are 0.16% and
0.14%, respectively. Both are rejected by the GRS test (p = 0.00).

The high-minus-low composite momentum decile earns on average 1.09% per month
(t = 4.21). The q5 model yields an insignificant high-minus-low alpha of −0.25% (t =
−0.85). Both the Roe and expected growth factors contribute to this performance, with
large, positive loadings of 1.16 and 0.9 (t = 5.44 and 4.49), respectively. The mean absolute
alpha is 0.1%, and the q5 model is not rejected by the GRS test (p = 0.35). The q-factor
model yields a high-minus-low alpha of 0.35% (t = 1.04), the mean absolute alpha of 0.1%,
and a GRS p-value of 0.08. For comparison, the Fama-French 6-factor model yields a high-
minus-low alpha of 0.33% (t = 2.08), a mean absolute alpha of 0.09%, and a GRS p-value
of 0.06. The alternative 6-factor model with RMWc yields a high-minus-low alpha of 0.29%
(t = 1.82), a mean absolute alpha of 0.1%, and a GRS p-value of 0.04.

The Fama-French 6-factor model does a better job than the q5 model in explaining the
composite value-minus-growth premium, which is on average 0.7% per month (t = 3.47).
The q5 model yields a high-minus-low alpha of 0.38% (t = 2.14), a mean absolute alpha of
0.16%, and a GRS p-value of 0.00. The q-factor model produces a high-minus-low alpha
of 0.28% (t = 1.48), a mean absolute alpha of 0.13%, and a GRS p-value of 0.00. For
comparison, the 6-factor model produces a high-minus-low alpha of 0.19% (t = 1.58) and
a mean absolute alpha of 0.1%, but the model is also rejected by the GRS test (p = 0.00).
The performance of the alternative 6-factor model with RMWc is largely similar. The
Fama-French 5-factor model is the best performer in this category, with a tiny high-
minus-low alpha of 0.04% (t = 0.3), albeit still rejected by the GRS test (p = 0.00).

The high-minus-low composite investment decile earns on average 0.66% per month
(t = 4.44). The q5 model is the best performer, yielding a tiny high-minus-low alpha of
0.06% (t = 0.54), a mean absolute alpha of 0.06%, and a GRS p-value of 0.15. The q-factor
model yields a high-minus-low alpha of 0.25% (t = 2.61), a mean absolute alpha of 0.1%,
and a GRS p-value of 0.00. For comparison, the Fama-French 6-factor model produces a
high-minus-low alpha of 0.27% (t = 2.84), a mean absolute alpha of 0.07%, and a GRS
p-value of 0.01. The performance of the alternative 6-factor model with RMWc is largely
similar, except for a GRS p-value of 0.06.

12 As detailed in Hou, Xue, and Zhang (2019), some anomaly deciles are formed monthly,
whereas others are formed annually. When calculating the percentile rankings for a given
anomaly at the beginning of month t, we adopt the same sorting frequency as in individual
anomaly deciles. The percentile rankings for monthly sorted anomalies are recalculated
monthly, and those for annually sorted anomalies are recalculated at the end of each June.
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The high-minus-low composite profitability decile earns on average 0.8% per month
(t = 4.64). The q5 model performs very well, with a high-minus-low alpha of −0.14%
(t = −1.21), a mean absolute alpha of 0.08%, and a GRS p-value of 0.09. The q-factor
model yields a high-minus-low alpha of 0.28% (t = 2.31), a mean absolute alpha of 0.07%,
and a GRS p-value of 0.01. For comparison, the Fama-French 6-factor model produces a
high-minus-low alpha of 0.43% (t = 3.94), a mean absolute alpha of 0.09%, and a GRS
p-value of 0.00. The alternative 6-factor model with RMWc improves the high-minus-low
alpha to 0.3% (t = 2.3), the mean absolute alpha to 0.07%, and the GRS p-value to 0.09.
Finally, the Daniel-Hirshleifer-Sun model is comparable with the q5 model in this category.

The high-minus-low composite intangibles decile earns on average 0.94% per month
(t = 5.27). The q5 model yields a high-minus-low alpha of 0.5% (t = 3.19), a mean absolute
alpha of 0.19%, and a GRS p-value of 0.00. The q-factor model has a slightly lower high-
minus-low alpha of 0.42% (t = 2.62). The Fama-French 6-factor model has a somewhat
larger high-minus-low alpha, 0.54% (t = 4.25), but is otherwise comparable with the q5

model. Finally, the high-minus-low composite frictions decile only earns an insignificant
average return of 0.23% (t = 1.77).

4.3 INDIVIDUAL FACTOR REGRESSIONS

To dig deeper, we present individual regressions of the 52 q-anomalies. To save space,
Table 8 reports the alphas and t-values for the q-factor model, the q5 model, and the two
versions of the Fama-French (2018) 6-factor model, as well as the q5 loadings for each
high-minus-low decile. The Supplementary Appendix contains the results for all the 150
anomalies and for all the factor models.
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21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Pda dRoe1 Ato Atoq1 Atoq6 Atoq12 Opa Olaq1 Olaq6 Olaq12 Cop Cla Claq1 Claq6 Claq12 Oq1

R −0.56 0.76 0.40 0.67 0.59 0.49 0.47 0.78 0.55 0.51 0.68 0.61 0.52 0.49 0.48 −0.43
t
R

−4.54 5.78 2.32 3.85 3.49 3.02 2.44 3.84 2.85 2.78 3.94 3.65 3.43 3.75 3.88 −1.97

αq −0.52 0.36 0.43 0.42 0.41 0.39 0.52 0.43 0.28 0.35 0.75 0.81 0.46 0.41 0.46 −0.38
αq5 −0.18 0.08 0.10 0.15 0.15 0.14 −0.04 −0.11 −0.23 −0.11 0.11 0.18 −0.04 −0.06 0.03 −0.06
αFF6 −0.48 0.55 0.39 0.44 0.42 0.38 0.54 0.56 0.39 0.42 0.75 0.80 0.50 0.44 0.49 −0.48
αFF6c −0.45 0.56 0.31 0.40 0.37 0.32 0.44 0.50 0.32 0.35 0.55 0.60 0.43 0.35 0.39 −0.34

tq −3.40 2.64 2.82 2.50 2.53 2.51 3.41 2.93 2.11 2.82 5.57 5.78 3.17 3.13 3.83 −2.65
tq5 −1.22 0.57 0.63 0.88 0.90 0.90 −0.25 −0.84 −2.11 −1.07 0.96 1.57 −0.28 −0.51 0.28 −0.42
tFF6 −3.28 4.49 2.94 2.97 3.08 2.88 3.86 3.94 3.24 3.84 6.44 6.71 3.79 3.96 4.79 −3.26
tFF6c −2.99 4.36 2.23 2.57 2.51 2.30 2.87 3.05 2.23 2.69 4.75 5.16 3.17 3.01 3.76 −2.36

|αq | 0.18 0.09 0.09 0.11 0.07 0.07 0.14 0.13 0.09 0.09 0.18 0.15 0.20 0.12 0.13 0.08

|αq5 | 0.09 0.06 0.12 0.12 0.12 0.12 0.07 0.07 0.07 0.05 0.07 0.07 0.07 0.05 0.04 0.08

|αFF6| 0.16 0.10 0.10 0.11 0.08 0.07 0.14 0.18 0.13 0.12 0.18 0.15 0.20 0.12 0.13 0.10

|αFF6c| 0.13 0.09 0.11 0.13 0.09 0.09 0.14 0.18 0.13 0.12 0.15 0.14 0.18 0.11 0.13 0.10

pq 0.00 0.03 0.00 0.01 0.04 0.03 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.01
pq5 0.17 0.45 0.00 0.01 0.01 0.01 0.08 0.52 0.14 0.38 0.25 0.40 0.49 0.93 0.51 0.25
pFF6 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
pFF6c 0.01 0.01 0.01 0.00 0.02 0.03 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.08 0.00 0.05

βMkt −0.03 0.06 0.24 0.15 0.13 0.12 −0.16 −0.03 −0.03 −0.06 −0.13 −0.11 −0.01 0.03 0.00 0.09
βMe 0.05 −0.01 0.29 0.43 0.38 0.33 −0.40 −0.27 −0.32 −0.32 −0.53 −0.55 −0.27 −0.27 −0.27 0.77
βI/A −0.09 0.10 −1.08 −0.62 −0.73 −0.80 −0.58 −0.43 −0.48 −0.57 −0.32 −0.56 −0.29 −0.28 −0.32 0.28
βRoe 0.14 0.48 0.16 0.43 0.41 0.36 0.42 0.81 0.73 0.65 0.20 0.12 0.22 0.22 0.18 −0.62
βEg −0.50 0.41 0.50 0.40 0.38 0.36 0.82 0.84 0.79 0.72 0.97 0.93 0.77 0.73 0.66 −0.49

tMkt −0.82 1.56 5.53 2.66 2.50 2.30 −4.36 −0.77 −1.02 −2.37 −3.75 −3.07 −0.26 1.21 −0.20 2.39
tMe 0.66 −0.08 5.05 5.54 5.56 5.81 −4.83 −3.69 −5.72 −5.76 −8.09 −9.19 −4.57 −5.84 −6.20 14.54
tI/A −0.70 1.22 −9.62 −6.62 −7.92 −8.95 −7.09 −4.75 −6.48 −7.94 −4.42 −7.01 −3.19 −3.48 −4.52 2.78
tRoe 1.56 5.28 2.17 4.30 5.15 4.71 6.09 10.71 11.84 9.43 3.59 1.94 3.13 4.28 3.77 −8.65
tEg −4.78 3.61 4.59 3.49 3.49 3.35 8.07 9.14 10.39 8.73 11.84 12.27 7.00 10.18 10.81 −5.75
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37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Tbiq12 RdmRdmq1Rdmq6Rdmq12Rdsq6Rdsq12 Rer Eprd R1
a R

[2,5]
a R

[6,10]
a R

[11,15]
a R

[16,20]
a Isff1 Isq1

R 0.21 0.73 1.09 0.80 0.83 0.50 0.51 0.39−0.59 0.63 0.71 0.81 0.63 0.57 0.30 0.22
tR 2.02 2.96 3.04 2.31 2.62 2.00 2.01 2.85−3.38 3.31 4.31 5.09 4.65 3.53 3.41 2.59

αq 0.32 0.81 1.41 1.02 0.92 0.90 0.93 0.40−0.58 0.53 0.83 1.08 0.61 0.65 0.31 0.28
αq5 0.36 0.27 1.05 0.58 0.43 0.64 0.65 0.23−0.48 0.43 0.84 0.91 0.56 0.63 0.23 0.18
αFF6 0.22 0.68 1.36 1.01 0.88 0.88 0.93 0.32−0.79 0.42 0.76 1.08 0.66 0.62 0.29 0.23
αFF6c 0.15 0.79 1.37 1.06 0.96 0.98 1.01 0.30−0.84 0.34 0.69 1.06 0.67 0.65 0.28 0.21

tq 2.94 3.64 3.33 3.25 3.55 3.27 3.36 2.51−3.32 2.57 4.28 5.13 3.68 3.48 3.05 2.84
tq5 3.01 1.24 2.37 1.79 1.60 2.31 2.35 1.46−2.83 1.94 4.11 4.62 3.27 3.06 2.07 1.71
tFF6 1.98 3.24 3.90 3.48 3.56 3.91 4.10 2.12−5.04 2.39 4.00 5.61 4.28 3.62 3.17 2.45
tFF6c 1.34 3.64 3.93 3.71 3.98 4.44 4.54 1.99−5.23 1.84 3.49 5.14 4.00 3.49 2.93 2.16

|αq| 0.10 0.28 0.53 0.47 0.46 0.30 0.30 0.13 0.15 0.14 0.17 0.24 0.17 0.16 0.09 0.11

|αq5 | 0.08 0.12 0.36 0.27 0.24 0.23 0.21 0.12 0.16 0.12 0.17 0.20 0.17 0.16 0.08 0.09

|αFF6| 0.09 0.24 0.48 0.41 0.40 0.28 0.28 0.11 0.19 0.12 0.15 0.24 0.18 0.16 0.08 0.08

|αFF6c| 0.09 0.24 0.46 0.40 0.39 0.26 0.26 0.11 0.21 0.11 0.14 0.24 0.19 0.18 0.08 0.07

pq 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.11 0.00 0.00 0.00 0.00 0.00 0.00
pq5 0.01 0.25 0.00 0.02 0.03 0.00 0.00 0.05 0.01 0.53 0.00 0.00 0.00 0.02 0.02 0.06
pFF6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.29 0.00 0.00 0.00 0.01 0.01 0.01
pFF6c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.41 0.00 0.00 0.00 0.00 0.02 0.08

βMkt −0.08 0.23 0.08 0.00 0.01 −0.08 −0.11 0.09 0.10 0.23 0.06 0.00 0.00 −0.06−0.01−0.01
βMe −0.17 0.67 0.21 0.57 0.67 0.20 0.18−0.11 0.34−0.14−0.17 0.04 −0.06 −0.08 0.14 0.20
βI/A −0.12−0.10 0.47 0.51 0.61 −1.00 −1.01−0.16 0.47−0.21−0.30 −0.42 −0.02 −0.06−0.07−0.10
βRoe 0.04−0.87 −1.15 −1.06 −0.90 −0.41 −0.41−0.02−0.57 0.14 0.04 −0.30 0.07 −0.01−0.08−0.16
βEg −0.05 0.84 0.55 0.67 0.75 0.40 0.42 0.24−0.14 0.15−0.02 0.25 0.08 0.02 0.12 0.15

tMkt −2.16 3.93 0.71 0.05 0.15 −1.01 −1.30 1.69 1.73 4.34 1.01 −0.06 −0.07 −1.28−0.18−0.28
tMe −3.34 7.55 1.07 4.24 5.76 1.33 1.15−1.19 4.45−1.23−1.67 0.47 −0.66 −1.53 3.75 2.80
tI/A −1.89−0.69 1.65 2.58 3.68 −6.09 −6.55−1.36 4.01−1.46−2.65 −2.62 −0.18 −0.48−0.96−1.42
tRoe 0.58−5.83 −4.15 −6.22 −6.26 −2.27 −2.42−0.21−5.13 0.99 0.32 −2.34 0.63 −0.13−1.40−2.76
tEg −0.67 5.37 2.45 3.50 4.61 2.45 2.67 1.98−1.25 1.02−0.19 1.88 0.66 0.21 1.81 2.03

For each high-minus-low decile, we report the average return, R, the q-factor alpha, αq , the
q5 alpha, αq5 , the Fama-French (2018) 6-factor alpha, αFF6, the alpha from the alternative
6-factor model with RMW replaced by RMWc, αFF6c, as well as their heteroscedasticity-and-
autocorrelation-consistent t-statistics, denoted by t

R
, tq , tq5 , tFF6, and tFF6c, respectively. Also,

for all the ten deciles formed on a given anomaly variable, we report the mean absolute alphas
from the q-factor model, |αq |, the q5 model, |αq5 |, the 6-factor model, |αFF6 |, and the alternative

6-factor model, |αFF6c |, as well as the p-values from the GRS test on the null hypothesis that all
the alphas across a given set of deciles are jointly zero. The p-values are denoted by pq, pq5 , pFF6,
and pFF6c, respectively. We also report the loadings on the market, size, investment-to-assets, Roe,
and expected growth factors (βMkt, βMe, βI/A, βRoe, and βEg, respectively) in the q5 model, as
well as their heteroscedasticity-and-autocorrelation-adjusted t-values (tMkt, tMe, tI/A, tRoe, and
tEg, respectively). Table 4 describes the anomaly symbols.

All models including the q and q5 models fail to explain the anomaly on cumulative
abnormal returns around earnings announcements, Abr, especially at the 1-month horizon.
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The high-minus-low decile earns on average 0.73% per month (t = 5.74). The q-factor alpha
is 0.65% (t = 4.52), and the q5 alpha 0.52% (t = 3.8). Similarly, the Fama-French 6-factor
alpha is 0.64% (t = 4.88), and the alternative 6-factor alpha 0.65% (t = 4.71).

The Barillas-Shanken model fails to explain the value-versus-growth anomalies (book-
to-market, Bm; earnings-to-price, Epq12; and sales-to-price, Sp) (the Supplementary Ap-
pendix). The alphas for the high-minus-low deciles are −0.31%, −0.44%, and −0.46% per
month (t = −2.39, −3.6, and −3.11), respectively. In contrast, the Fama-French 6-factor
alphas are −0.09%, −0.03%, and −0.18% (t = −0.82, −0.26, and −1.38), the q-factor al-
phas 0.11%, −0.07%, and −0.09% (t = 0.71,−0.44, and −0.48), and the q5 alphas 0.05%,
−0.04%, and 0.02% (t = 0.32, −0.28, and 0.1), respectively.

The culprit is that the UMD loadings in the Barillas-Shanken 6-factor model are rela-
tively large, 0.41, 0.19, and 0.19 (t = 6.84, 3.08, and 3.83), respectively (untabulated). In
contrast, the UMD loadings in the Fama-French 6-factor model are small, −0.03, −0.07,
and −0.13 (t = −0.71,−1.71, and −4.19), respectively. We verify that the correlation be-
tween the monthly formed HMLm and UMD is high, −0.65, but that between the annually
formed HML and UMD is low, only −0.19. The high HMLm-UMD correlation pushes up
the UMD loadings in the presence of HMLm in the Barillas-Shanken model, causing it to
overshoot the average returns to yield large, negative alphas.

The q5 model largely explains the accruals anomaly. The high-minus-low decile on
operating accruals (Oa) has a large q alpha of −0.57% per month (t = −4.25). The q5

model reduces the alpha to −0.2% (t = −1.3). A more challenging anomaly for the q-
factor model is discretionary accruals (Dac). The high-minus-low Dac decile has a large q
alpha of −0.74% (t = −5.33), and the q5 model shrinks the alpha to −0.31%, albeit still
significant (t = −2.16). For comparison, the Fama-French 6-factor alphas for the Oa and
Dac deciles are −0.48% (t = −3.49) and −0.69% (t = −5.08), and the alternative 6-factor
alphas −0.32% (t = −2.13) and −0.59% (t = −4.12), respectively.

The q5 model also improves on the q-factor model in explaining the dWc (change in net
noncash working capital) and dFin (change in net financial assets) anomalies. The high-
minus-low dWc and dFin deciles have significant q-factor alphas of −0.58% per month (t =
−4.38) and 0.41% (t = 2.97) but insignificant q5 alphas of −0.23% (t = −1.77) and 0.14%
(t = 0.97), respectively. For comparison, the Fama-French 6-factor alphas are −0.51%
(t = −3.93) and 0.46% (t = 3.81), and the alternative 6-factor alphas −0.36% (t = −2.6)
and 0.34% (t = 2.63), respectively.

The high-minus-low Oa and Dac deciles have large expected growth factor (REg) load-
ings of −0.56 (t = −5.58) and −0.64 (t = −6.02), respectively. As such, high operating and
discretionary accruals indicate low expected growth. Intuitively, given the level of earn-
ings, high accruals mean low cash flows available for financing investments, giving rise to
low expected growth. Similarly, the high-minus-low dWc decile has a large REg loading of
−0.52 (t = −5.45). Intuitively, increases in net noncash working capital signal high past
growth but low expected growth. Finally, the high-minus-low dFin decile has a large REg

loading of 0.4 (t = 3.66). Intuitively, increases in net financial assets provide more internal
funds available for investments, stimulating expected growth going forward.

The q5 model largely explains the R&D-to-market (Rdm) anomaly. The annually sorted
high-minus-low decile has a q-alpha of 0.81% per month (t = 3.64). The q5 model reduces
the alpha to 0.27% (t = 1.24) via a large REg loading of 0.84 (t = 5.37). Similarly, in
monthly sorts, at the 1-, 6-, and 12-month horizons, the high-minus-low Rdmq deciles
have q-alphas of 1.41%, 1.02%, and 0.92% (t = 3.33, 3.25, and 3.55) but smaller q5 alphas
of 1.05%, 0.58%, and 0.43% (t = 2.37, 1.79, and 1.6), respectively. The corresponding REg
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loadings are 0.55, 0.67, and 0.75 (t = 2.45, 3.5, and 4.61), respectively. Intuitively, R&D
expenses depress current earnings due to current accounting standards but raise intangible
capital that induces future growth opportunities. While the q-factor model misses this
economic mechanism, the q5 model with the expected growth factor accommodates it.

For comparison, the high-minus-low Rdm decile has a Fama-French 6-factor alpha of
0.68% per month (t = 3.24) and an alternative 6-factor alpha of 0.79% (t = 3.64). The
high-minus-low Rdmq deciles have 6-factor alphas of 1.36%, 1.01%, and 0.88% (t = 3.9,
3.48, and 3.56), as well as alternative 6-factor alphas of 1.37%, 1.06%, and 0.96% (t =
3.93, 3.71, and 3.98), respectively.

5. Conclusion

In the investment theory, firms with high expected investment growth should earn higher
expected returns than firms with low expected investment growth, holding current invest-
ment and expected profitability constant. Motivated by this economic insight, we form
cross-sectional growth forecasts and construct an expected growth factor, which yields an
average premium of 0.84% per month (t = 10.27) in the 1967–2018 sample. We augment
the q-factor model with the expected growth factor to form the q5 model. In a large set
of testing deciles based on 150 anomalies, the q5 model shows strong explanatory power
and substantially outperforms the Fama-French 6-factor model.
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